

Teaching Digital Editions of the Bible and

Ancient Sources. A Reflection

Ensino de Edição Digital da Bíblia e Fontes Antigas. Uma

Reflexão

https://doi.org/10.21814/h2d.3509

James Moore, Humboldt Universität zu Berlin, Germany

Como citar

Moore, J. (2021). Ensino de Edição Digital da Bíblia e Fontes Antigas. Uma
Reflexão. H2D|Revista De Humanidades Digitais, 3(1).
https://doi.org/10.21814/h2d.3509

ISSN: 2184-562X

https://doi.org/10.21814/h2d.3509
https://doi.org/10.21814/h2d.3509

Teaching Digital Editions of the Bible and Ancient
Sources

: A Reflection

Ensino de Edição Digital da Bíblia e Fontes Anti-
gas. Uma Reflexão
https://doi.org/10.21814/h2d.3509

James Moore, Humboldt Universität zu Berlin, Germany

Abstract

This pedagogical article presents an example of how one can teach novice students
to build and to work with their own digital editions of ancient sources. It discusses
modern approaches to digital editions and promotes teaching SQL databases in
ancient studies programs. It provides a detailed guide on how one can structure
a student database that will be beneficial to students of all levels and disciplines.

Keywords

SQL Database; PostgreSQL; Bible; Ancient Studies; Digital Editions

Resumo

Este artigo pedagógico apresenta um exemplo de como os alunos podem aprender
a construir e a trabalhar com as suas próprias edições digitais de fontes antigas.
O artigo explora abordagens modernas às edições digitais e promove o ensino
de bases de dados SQL em cursos de estudos antigos. Fornece, ainda, um guião
detalhado para auxiliar os alunos a estruturar uma base de dados, que será
vantajosa para todos os níveis de ensino e áreas disciplinares.

Palavras-chave

Base de dados SQL; PostgreSQL; Bíblia; Estudos Antigos; Edições Digitais

1

https://doi.org/10.21814/h2d.3509

1. Introduction
In the second semester of 2020/1 at the Humboldt University in Berlin, Germany
I taught a course titled Introduction to Digital Editions of the Bible and Texts
from the Ancient World. The two primary objectives of the course were (1)
to introduce students to relational databases, their construction, and their use
in personal small group research in the fields of Bible and ancient studies and
(2) to survey for the students additional digital tools and resources used in the
development and publication of web-based digital editions. The primary learn-
ing outcome was the development of a working multilingual Bible manuscript
database for each student’s future research. Each database included a workspace
in which the student may further develop multilingual/multi-manuscript compar-
isons, concordances, a multilingual lexicon, complete multilingual word-by-word
grammatical analyses, and a biblical commentary. Secondary learning out-
comes included the knowledge to expand the student’s database into projects on
prosopography, social network analysis, paleography, and bibliographic research.
Additionally, the students were made aware of digital tools necessary for the
modern study of biblical and ancient manuscripts, including types of digital
photography, basic techniques for editing photographs (e.g. in Photoshop and
Gimp), data storage and access, and indexing vs. storing photographs in their
databases. The students were also made aware of full stack development, the
API (Application Programming Interface) and UI (User Interface) necessary for
a “live” digital edition website.

Central to my teaching philosophy is, and always has been, that every course, no
matter how philosophical or abstract, must make clear the pragmatic job skills
it teaches students. This course prepares students for cutting-edge research in
the fields of Bible and ancient studies by providing technical skills necessary for
post-graduate employment.

I do not have a degree in computer science. I am, however, one from the
generation that straddled the cultural turn to the digital world, and my interests
in computing led me to acquire self-taught knowledge of computing languages.
Life choices led me to pursue Ancient Near Eastern Studies. Throughout my
career as an undergraduate and graduate student I can recall many failed
attempts of finding my own digital workflow. It was often more time-consuming
to do work digitally rather than with pen and paper, especially working in
right-to-left (rtl) languages. But times have changed, and today, working in
databases is extremely time-efficient. I now cannot see a single disadvantage of
doing most of my professional work in a database environment.

A very popular approach to digital editions in ancient studies is to prepare
a Database alongside XML files. A common approach is to organize the
ancient sources’ metadata (information about the source) in a database along
with paths to external files which hold the sources’ textual information. It is
popular to store digitized texts in an XML (Extensible Markup Language) file.
XML format has been well received in ancient (and cultural) studies because

2

it offers many advantages. One can “markup” (or sometimes called “tag”)
any part of a text with any type of information (e.g. cultural, grammatical,
commentative), and a digital community known as TEI (Text Encoding Initiative;
https://tei-c.org/) has spent decades adopting and adapting guidelines for how
to “markup” languages, both ancient and modern. While XML files marked
up with TEI guidelines may be used to present an aesthetically pleasing digital
publication, I have found two great disadvantages to using XML in personal
or small group research. First, every structural item needs to be defined in
an XML file. This means that every paragraph, line, type-face alteration, etc.
must be written in code. This is an extremely lengthy process, and while it may
be aided by using an editor application combined with a custom written CSS
(Cascading Style Sheets) file, these are time-consuming and require technical
skills to write. They also may need to change as research develops. Second,
it is virtually impossible to extensively markup rtl languages, such as Hebrew
or Aramaic, without a customized CSS file, and even then, difficulties abound.
In short, XML is good when a project has a specific and well-defined goal or
presentation in mind, but I personally find it more trouble than it is worth for
multilingual and advanced research that is ever evolving.

While I informed students in my course of XML and about marking up files, I
opted to teach students how to perform most necessary procedures for student
(and early career) success within a single SQL relational database. On this point,
I will begin to describe the course.

2. The Philosophical Foundation
I began the course by posing the questions: who pays for the internet? What
should be free and to whom? This helped us to intellectually orient the course,
not only within our context of a public university, but also as researchers who may
find themselves on digitalization projects negotiating budgets. These questions
allowed us to discuss throughout the course pragmatic issues regarding network
access, the limits of open-source software, problems with platform compatibility,
the source of digital labor, and other relevant conundrums.

I also asked students to reflect throughout the course on their own methodology,
workflows, and processes by which they formulate research questions and complete
projects as well as to reflect on their limits on time, labor, and capabilities. By the
end of the course it was clear that simply thinking about research problems from
the perspective of relational databases is a productive exercise for fine-tuning
methodologies and objectives on any research project.

3. The Structure of the Course
My objective was to offer a course that did not require the students to pay for
software, but designing such a course came with many challenges. I spent months

3

https://tei-c.org/

(1) deciding whether to introduce the students to all the open-source relational
database software or just one, (2) deciding whether to only teach SQL coding
(Structured Query Language—the computer language used by the most popular
databases) or to incorporate a GUI (Graphic User Interface [application]) into
the course, (3) looking for free or open-source cross-platform GUIs, and (4)
deciding what I want the students to achieve or produce by the end of the course.

1. SQL database software. Of the many relational database options
available, three that are based on SQL are commonly used: MySQL,
MariaDB, and PostgreSQL. MySQL is open-source and freely available,
but it is owned by Oracle. With corporate backing comes many advantages,
and the software is widely available and well maintained, but due to an
earlier experience I had with changing paywalls while I was using FileMaker,
I have a bias and suspicion against MySQL’s corporate backing. MariaDB
splintered from MySQL when it was acquired by Oracle. It has a large
following and would make a good option for a student research database.
I, however, use PostgreSQL for my own research database, so I decided
to teach it. PostgreSQL is free and open-source with a long history of
development. It is the preferred database for many scientific research
projects, and, therefore, it is well supported on many university campuses.

2. GUI vs. CLI. Database software can run from either a command line
using SQL or from an application. For a productive workflow, the vast
majority of data input is more efficient when using a GUI (Graphic User
Interface) application than when using the CLI (Command Line Interface).
That said, I believe a user should know how to perform all SQL functions
and operations using the CLI (or at least how to look them up). Most
importantly a grasp of CLI is necessary to perform advanced and targeted
searches of the data and to produce useful view-tables in which relationally
connected data can be brought together and queried. There are excellent
free online tutorials and videos available to aid the students’ learning of
SQL through the CLI.

3. Choosing a GUI. The advances in recent years in GUIs that make
data input and querying easy, is what allows students and scholars to
efficiently perform their research in an SQL database environment. In the
past, database software was generally only useful after a custom (web)
GUI was developed by software engineers. Older general-purpose GUIs,
such as PGadmin (https://www.pgadmin.org/), were/are very useful for
administrators monitoring the databases and server-side activity, including
allocating user permissions to (parts of) databases. Now, however, many
companies make available GUIs that are friendly (to variable degrees) for
data input and querying. These have opened the world of SQL databases
to the intermediate computer user for everyday use. Just like selecting any
type of application, however, there are advantages and disadvantages to the
different options available. For my teaching purposes, the biggest barriers
were cross-platform compatibility (i.e. does the GUI work on Windows

4

https://www.pgadmin.org/

and mac?) and price. I use Postico (https://eggerapps.at/postico/)
for my own research database, but this GUI is not free (although it is
extremely reasonably priced) and is only available on mac. Some GUIs
provide a free trial period but restrict features. I was looking for a
GUI that (a) had a friendly graphic user interface that telescoped or
teleported the user through the databases’ foreign key relationships (i.e.
the relationships among tables), (b) had a simple search field interface, (c)
provided a graphical interface for importing and exporting CSV (Comma
Separated Values) files - the universal spreadsheet file format - and (d)
could handle rtl Unicode characters. The application Beekeeper Studio
https://www.beekeeperstudio.io/ is an excellent choice, though it does
not provide a graphical interface for importing CSV files, and its ability to
teleport the user through the foreign key relationships is limited to tables
within the same schema (a schema is basically a folder into which tables
may be grouped). The first drawback is remedied by the GUI Table Plus
(https://tableplus.com/); the free version is greatly restricted, especially
on Windows, but offers a useful CSV import feature. The second drawback
to Beekeeper Studio, however, may force one to slightly alter the structure
of their database, but despite this, it is an excellent teaching aid. Besides,
I anticipated that the students would produce databases that would be
altered or rebuilt as they move forward in their education and careers.
Lastly, for the purposes of backing up their databases or for restoring
databases from the class’ models, they used PGadmin.

4. The students’ databases. I anticipated that the students would begin
with a variety of levels in computing. In reality they began with virtually no
knowledge of databases or coding. As one student expressed, “I had to come
to terms with the label ‘digital native’ that I had been assigned.” As with
any new course, I had greater ambitions than were realistic, so early in the
semester I had decided to focus on helping the students develop a working
Bible manuscript database and showed them how to incorporate other
ancient sources rather than walk them through the process of incorporating
non-biblical sources. The course was offered in the theological faculty, so
my choice to focus on Bible manuscripts seemed appropriate.

The students’ databases included the following components:

• "documents" table - Foundational to the students’ databases is a documents
table in which biblical manuscripts are listed and assigned an id number
(Figure 1).

• "bible" schema - Each Bible manuscript’s id number is assigned a table
in the bible schema (fig. 2). For manuscripts like the Leningrad Codex,
which is freely available in Unicode, the students formatted a CSV file
in Excel or Numbers and imported it into the corresponding manuscript
table. For manuscripts which are not yet digitized, the students were able
to manually input the original text and translation.

5

https://eggerapps.at/postico/
https://www.beekeeperstudio.io/
https://tableplus.com/

Figure 1: List of Manuscripts

Figure 2: Bible Schema

• "lexicon" schema - Three tables are central to this schema, a “lexicon_base”
table (Figure 3), a “concordance” table (Figure 4), and a “grammar” table
(Figure 5). The lexical_base table serves as the students’ own lexicon,
which will grow over time. It has columns for a lexeme, meaning, notes,
bibliography, and other linguistic features. It can be easily tailored for a
full dictionary-type project, and at least one student expressed interest in
developing their database in this direction in the future. The concordance
table, the rows of which are automatically generated from a simple line of
code, contains every individual word found in all manuscripts. Here the
students will link each word to an entry in the lexicon. This process too
can be mostly automated by creating a view-table specific to the genre or
language of the newly entered text and then updating the concordance table,
where the words of the new entries agree with those already assigned lexical
id numbers. The words which the students wish to study in grammatical
detail can be sent from the concordance table to the grammar table. There
they can assign a complete grammatical analysis to each word. There is a
place for students to leave general comments on any individual word on
the concordance table or grammatical comments on individual words on
the grammar table.

• “commentaries” schema - The commentary is a place for students to make
notes or compile bibliographies on any book, chapter, or verse in the Bible
(Figure 6).

6

Figure 3: Student Lexicon

Figure 4: Concordance Table

Figure 5: Grammar Parsing Table

7

Figure 6: Student Bible Commentary

3.1. View-tables
A powerful feature of relational databases is that data from any part of the
database can be brought together with any other part in a view-table. These
are tables that draw selected information from any one or more tables in the
database into a single read-only table. The data can then be extensively queried.

By week seven, the students had a basic and working database on their own
machines. In order to test the databases while we were developing them, students
were required to read and parse verses along the way as though they were in
a language learning class. For our course we focused on Biblical Aramaic and
read sections of Daniel and Ezra in Aramaic, Syriac, and Greek. We prepared
the texts of the Leningrad Codex, the Peshitta, and the LXX in their respective
tables. Then I instructed the students on how to create a view-table that orders
data from the individual Leningrad Codex, the Peshitta, and the LXX tables
by verse. The result was an interlinear digital Bible view-table (Figure 7). The
table is searchable, and students are able to find strings of letters with or without
vowels in Syriac or Aramaic or with or without accents and breathing marks in
Greek. In a second window they could work on their concordance of the assigned
verses, and in a third window they could grammatically label each word.

Figure 7: Manuscripts in Parallel View-Table

As an assignment one week they were asked to create a second and more
complicated view-table. This would transform their grammatical table, which
relies on 16 daughter tables, into an easy-to-read and searchable parsing chart
(Figure 8). They could then simply share their parsings of assigned verses in
CSV format for comparison (or for grading if the instructor desires). Obviously,
they can also search individual words by any grammatical combinations they
wish.

8

Figure 8: Advanced Grammar View-Table

I further showed the students how they could reverse engineer the manuscripts
in a view-table using the concordance, so that they may search by lexical bases
rather than exact spellings. This allows them to find adjacent syntactical features,
such as some idiomatic constructions. For example, in this view-table they could
type in "" and get back every verse in the database, no matter how the verbal
root "" is conjugated or spelled.

Figure 9: View-Table. Reverse Engineered from Lexical Bases for Advanced
Searches

In only a semester with other tasks to complete, we stopped our build at this
point, and worked on fine-tuning it and developing a workflow. Besides the
benefit of learning a computer language and a little code, using an SQL database
is significantly easier and less time-consuming than marking up XML files. I
nonetheless showed the class how PostgreSQL contains an XML data type that
will maintain the integrity of such lines of code should the students develop
their databases along those lines. Certainly, to achieve more complex syntactical
searches, XML tagging would be of value, but apart from highly specified project
work, one must weigh the time spent producing XML files against the value of
their usability.

While students were fine-tuning their databases and workflow by regularly
preparing verses for class, I continued to use 30–50% of the class time to discuss
how to incorporate bibliographies (such as from Zotero) and photographs into
their databases. We also discussed the types of digital photography used in
ancient studies (e.g., Hi-def scans, IR, multispectral, RTI) and the pros and
cons of these formats for personal, group, or large project research. We ended
the course with a discussion of full stack development, in particular the PERN

9

(PostgreSQL, Express, React, and Node.js) stack. The goal of these modular
discussions was to inform students of the major working components of most
modern research projects.

4. Teaching Conditions
I was fortunate to test this course under fairly ideal conditions. The class size
was extremely small, three very good students, which allowed for a true workshop
environment to develop. The class could function well with around 10 students
or with 11+ students, if teaching assistants and/or workshop hours were added
to it. That I taught this class online during COVID pandemic restrictions had,
in some measure, benefits over the traditional classroom setting. I was able to
easily record the meetings so that students could review them later, and students
were able to share their screens to present their work or troubleshoot. Student
feedback showed that recorded sessions were key to their success, especially
during the database build. In this regard, there is no advantage to holding
a face-to-face class in a brick-and-mortar setting for most lessons. That said,
there would be an advantage to face-to-face troubleshooting workshops 2–4 times
throughout the semester.

Factors that must be considered when teaching a digital course are the university’s
network and security restrictions. One student was attending from a university in
our consortium and did not have credentials for the VPN on which my university’s
database servers are kept. After various attempts to find a workaround that
would easily allow students to access a model database built on my university’s
resources, the solution proved too complicated for novice students in the end.
It was simply not possible to allow them to create a network database, which I
could easily help troubleshoot, as I had originally planned. Instead, students
created their databases on their own machines. The drawback to this is that they
were initially bogged down with learning how to install, spin up, and connect to
their own databases, which can be overwhelming to the novice.

I found it useful to create a backup copy of the database each week and to create
a new database for the next week. After each class session, I would create a
database dump, date it, and make it available to students. I would then prepare
the steps for the next week’s work. This allowed me to have on hand copies of
each stage of the build from each week. These versions of the database came in
handy more than once throughout the course. When a student would make a
significant error, they were able to simply restore their database from the latest
class session and continue from there.

5. Results
The course was a great success and produced Bible and ancient studies students
who can easily join, adapt to, or perhaps propose a project that is producing

10

digital editions. It also helped the students develop a digital work ethic. If they
continue to develop and use their databases throughout their education and into
their professional careers, they will have a repository of their cumulative work
and knowledge that is easy to query, adapt, and share.

I think in the end a clear argument can be made that a digital editions course
should be included in biblical and ancient studies programs as a foundational
methodologies course. In my view, it should be offered to undergraduate students
and mandatory for graduate students. The only prerequisite is that students need
a working knowledge of one ancient language—ideally one in which the teacher
is proficient. Students informed me that during the three most difficult weeks,
early in the build, they spent between 5–8 hours working on their databases.
This fell in the middle of the semester and did not disrupt final examination
preparation. I did not require a final project or paper, but theoretically one
could be assigned.

While I designed the course for text-based educational programs, a version could
be offered that prioritizes archaeology and artifact analysis. The point to be made
is that a course on digital editions provides students with foundational skills in the
medium of the modern era. These skills make students more valuable candidates
in their future careers, both in and outside the academy. Academic programs
spend one or more semesters teaching students field-specific methodologies, which
are normally antiquated and hardly retained. Why not use some of that time to
teach students the skills that are necessary for cutting-edge research in biblical
and ancient studies and which translate to a variety of positions in the workforce?

I am fortunate to work in a faculty that supports experimental learning and
innovative research, but hopefully institutions and hiring committees will discover
the value of teaching modern digital skills to students as part of their core
curriculum and as an integrated part of research in the modern humanities.

Submitted 2021-07-06 | Published 2021-10-31

11

	Ensino de Edição Digital da Bíblia e Fontes Antigas. Uma Reflexão
	1. Introduction
	2. The Philosophical Foundation
	3. The Structure of the Course
	3.1. View-tables

	4. Teaching Conditions
	5. Results

