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Abstract: 

This article introduces a Bayesian learning approach for planning continuously evolving leagile project and portfolio 

baselines. Unlike the traditional project management approach, which uses static project baselines, the approach 
proposed in this study suggests learning from immediately prior experience to establish an evolving baseline for 

performance estimation. The principle of Pasteur’s quadrant is used to realize a highly practical solution, which extends 

the existing wisdom on leagile continuous planning. This study compares the accuracy of the proposed Bayesian 

approach with the traditional approach using real data. The results suggest that the evolving Bayesian baselines can 

generate a more realistic measure of performance than traditional baselines, enabling leagile projects and portfolios to 

be better managed in the continuously changing environments of today. 
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1. Introduction 

Today’s project management environment is much more dynamic and complicated than it has been in the past few 

decades. These days, organizations often need to continually change their product requirements to adapt to changes in 

the project environment [1]. Furthermore, the increased demand for fast project delivery with changing conditions has 

underlined the necessity for project managers to look for better project management solutions and resources. 

According to a report on the talent gap for the years 2017–2027 published by the Project Management Institute (PMI), 
by 2027, for the 11 countries analyzed, employers will need 87.7 million individuals working in project management-

oriented roles [2]. This surge in demand for employees could result in a $207.9 billion loss globally. Moreover, the 

effectiveness of project management execution is rapidly decreasing [3]. The 2018 CHAOS Report found that only 14% 

of projects completed in 2017 were genuinely successful; the remaining 86% accounted for challenged or failed projects 

[4].  McKinsey and Company reported that 17% of large information technology (IT) projects with project budgets over 

$15M go extremely wrong, threatening the existence of the whole company [3]. Project complexity negatively impacts 

project success, and the percentage of projects with high complexity rose from 35% in 2013 to 41% in 2018 [5]. 

Increasing project complexity poses significant challenges in assessing project performance. Continually evolving 

projects and portfolios require an evolving scale of measurement to accurately identity failures and successes. It is 

certain that the project management world will experience an increase in the complexity of IT projects, where 

traditional tools and models like the waterfall model will not be sufficient to measure the performance of modern 

dynamic projects [6]. 

The published studies discussed in this article (refer to literature review section) mainly focused on the growth of 

project complexity and the negative impact of massive project failures, risk factors, and success criteria; however, none 

of them explored whether the scale of the performance measures used in the current project management industry was 

effective for modern projects. The aim of this study is to establish a new straightforward tool (refer to the proposed 

evolving baseline method section) for managers that will allow them to measure leagile project and portfolio 

performance with respect to dynamic and evolving baselines. Specifically, a statistical model is developed (refer to 

methodology section) to assess the evolving baselines of leagile projects by incorporating continual learning from 

immediate past performance (refer to results and analysis section). This will facilitate the adoption of leagile project 

management in a broader range of projects (refer implication of the study section), improving their management and 

chances of success. 

The paper is organized as follows. Section 2 reviews the existing work in project/portfolio management; continuous 
planning delivery improvement; comparisons of leagile, Scrum, and plan-driven approaches; and existing project 

management challenges. Section 3 describes the methodology of this study and the SharePoint optimization data used 

for the evaluation. The methodology outlines the Bayesian continual learning framework and a comparison study to 

validate the proposed model against the traditional plan-driven model. Section 4 presents the results of this study. 

Section 5 provides the conclusions and limitations of the current study as well as recommendations for future studies.  

2. Literature review 

This section presents the findings from related research and case studies to expand the current perceptions about project 

and portfolio management processes. It begins with traditional plan-driven approaches and the agile delivery model, 

then explains the latest leagile continuous planning and delivery process. 

2.1 Project management approaches and challenges 

Theories and concepts about project management are ancient and have been rooted deep in all cultures from the stone 
age to the modern age. Project management has only become a formal discipline for delivering and managing novel 

ideas comparatively recently. As defined by the PMI, a project is a unique endeavor that delivers a new or enhanced but 

always unique solution [5]. It must always have a definitive start and end dates, and is a combination of quality, risk, 
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procurement, time, cost, schedule, resource management, and most importantly, scope, integration, and the 

communication of management disciplines [5]. 

Project and portfolio management processes have improved since their inception; however, their failure rate has not 

decreased [12]. KPMG (Klynveld Peat Marwick Goerdeler) International Limited conducted a survey in New Zealand 

on projects managed in 2010 and 2012. It found an unexpected increase in project failure rates in 2012 when compared 

with the 2010 survey data [7]. Similarly, the PMI analyzed their project performance in 2015 and found only 64% of the 
projects met their goals; the failed projects either had scope creep or simply could not survive [8]. The report 

recommended the use of lessons learned to improve the project success rate. Furthermore, the 2013 CHAOS Report [9] 

found a similar result, where only 39% of the projects succeeded. The 2014 CHAOS Report further found that the rate 

of success—on-time and on-budget— was only 9% [10]. Similarly, a study was conducted to understand the confidence 

level of project managers regarding project success [11]. It suggested that about 75% of managers lack confidence that 

their projects will be successful in the end. Most respondents claimed that the uncertainty associated with success 

criteria makes it difficult to deliver to expectations consistently [11], [13]. A recent study [14] confirms this fact that the 

larger sized projects are extremely complex; thus, the successful completion rate of such larger projects is much lower 

than smaller projects. Basit et al. [15] looked into why projects are failing a lot more than past within recently published 

33 relevant studies and found the top three reasons for in-house projects as “overrun budget & resources”, “unrealistic 

estimated schedule,” and “technical complexity”. It is known that the complexity always increases with uncertainty [16] 
and demand for faster software development [18] are creating unrealistic schedules. These studies leave us with the 

conclusion that project performance measurement is changing over time [19]; the way we define and measure project 

success in a complex environment may be outdated [15], [12], [13] and a change is required to establish a common 

language for success [21], [20]. 

Traditional plan-driven approaches like waterfall models are falling short in delivering the right product in the modern 

environment, especially when the project idea is extremely new and the execution happens in an uncertain and complex 

environment. A plan-driven approach estimates everything during the early phases and the baselines (boundaries) are 

defined by fixed project plans [22]. Such an approach cannot learn and improve continually based on recent executed 

events. As a replacement for the traditional approach, multiple types of agile and lean models are emerging to provide 

better solutions. One of the most famous agile delivery models is scrum. Schwaber was the first known scholar with 

several publications to support agile scrum as a new iterative and complex adoptive system to deliver pieces of the 

product in iterations with minimal upfront architecture design and planning effort [23]-[27]. It was reported that 
waterfall requires ten times more effort than scrum, whereas the velocity of scrum is seven times faster than waterfall, 

and the customer satisfaction of scrum is significantly better than waterfall [28]. Agile itself has improved in diverse 

ways in the last two decades. The disciplined agile delivery (DAD) model has gained fame in the last few years. DAD is 

a people-first agile framework that is specifically generated by picking the best elements of other Agile models like XP, 

Scrum, and Kanban [29]. Disciplined Agile (DA) became so popular after 2012 that the PMI recently adopted it with 

four new different certification programs. The DA Toolkit supports continuous improvement and scalability while 

allowing team members to choose their way of working (WoW) [30]. 

A continuous process of learning and improvement is required to sustain competitive advantages and thrive in rapidly 

changing market conditions [31]. It is not an overnight process; continuous improvement, also popularly known as 

Kaizen, and the process of waste removal for value addition, a Lean approach, cannot be achieved immediately. It is a 

continually evolving process [31]. Traditional plan-driven and standard agile models still cannot comprehend the 
possibility of system evolution for a set of complex projects. It requires system thinking, which enables all three 

aspects: Kaizen, Lean, and Agility, like the leagile delivery model. 

2.2 Evolving leagile project portfolio baselines 

To incorporate lean strategies in agile projects, a new version of the project delivery model has emerged Lean-agile 

(leagile), as referred as LeAgile. In 1999, Naylor et al. [32] proposed the leagility philosophy for manufacturing 

production. Later, the leagile idea continued to evolve into many sectors like healthcare, professional services, and most 

importantly, into software development.[6], [32]-[38]. The leagile method applies lean management to reduce waste in 
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the process and uses agile’s iterative strategy to support agility and faster delivery. In this model, lean thinking 

contributes towards project process evolution, and agile focuses on agility and continuous delivery. As a result, 

portfolio and project management processes are also continuously improved in the leagile model. 

To transform the complexity of modern projects, leagile requires continuous planning and efficient decision-making 

strategies. In general, existing agile and leagile approaches invest in minimal upfront architecture design and planning; 

project teams are expected to deliver faster on “not-all-known” scope in smaller packages [24], [27]. In his book [27], 
Cline argues against the agile teams’ mindsets of “no-up-front-anything” and “learning upfront is a waste of time.” He 

suggests that minimal necessary planning and learning are required to deliver a product as expected by business versus 

no planning at all. In the software development domain, where projects are managed in a dynamic and complex 

environment, current versions of agile and leagile models are incapable of continually planning for the immediate future 

[35], [36]. One of the reasons is that these models have not been extensively used in software development, and another 

is that the technology of software itself is advancing faster than the software development life cycle. These existing 

project delivery models cannot efficiently address the evolving baselines needed to seek accurate performance 

measurements for the continuous planning of large project portfolios. 

The standard portfolio management is defined as the coordinated management of interrelated projects by which an 

organization evaluates, selects, prioritizes, and allocates its limited resources to accomplish the best organizational 

strategies [39]. One of the critical steps in this process is portfolio prioritization based on project baseline 
measurements, which is prone to extreme missteps because of the complexities involved in decision making during 

project selection and project task allocation[40]. The traditional plan-driven approach uses a fixed portfolio baseline, 

which is created during the planning phase and stays fixed until the end of the project [41]. By contrast, the leagile 

model has a dynamic baseline that evolves over time [41]. Figure 1 illustrates a portfolio with four plan-driven projects 

and two leagile projects. Plan-driven projects have straight lines, representing the fact that there is no change in the 

baselines. By contrast, leagile projects have dynamic baselines that constantly shift. In reality, the measurement of 

success in a complex and dynamic environment should follow evolving baselines rather than the fixed baselines of the 

plan-driven approach. Besides, a study by Fadaki et al. [19] found that if both leanness and agility equally embedded in 

system and continually evolved, then the higher performance is achievable. 

 

 

Fig. 1. Portfolio baselines for plan-driven projects and leagile projects 
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Similarly, the study [40] proposed an IT portfolio management process framework, which references the concept of 

continually self-organizing portfolios based on learning from the analysis, screening, continuous optimization, and 

adjustment of the portfolio to achieve evolution and success. In a rapidly changing environment, a portfolio becomes 

exceptionally complex. The plans and strategies will not work if they stay static throughout the life of the portfolio; 

instead, they should continually evolve with the experience gained from recent past events [40]. Continuous planning 

and improvement are crucial in keeping the portfolio alive (reduced risk) given modern complexity [37], [42]. 

In the IT project management context, according to Fitzgerald and Stol [43], the only forms of continuous planning 

used are sprint iteration planning, developed from the agile approach, and software release planning. Continuous 

planning has not yet become widespread throughout all organizations, especially in the context of software development 

[6]. In addition, a mindset to achieving consistent success has not been established. Only 2.5% of companies complete 

their projects successfully [44]. Consistently delivering successful projects is the key to the genuine success of a 

business [45]. Consistent success requires: i) direct “line-of-sight” feedback on project progress; and ii) incorporation of 

“learning from experience” for the continuous improvement of project management processes and practices [45], [34, p. 

106-109]. 

In modern project management practice, it has become critical to establish a learning system that incorporates lessons 

from failures with immediate adaptation to sudden changes while maintaining the transparency of knowledge 

throughout multiple project teams to strategic portfolio leaders [45], [46], [47]. Furthermore, the recently published 
CHAOS Report [4] introduces a new definition of project success called “pure success.” Pure success is the successful 

delivery of high customer satisfaction and the generation of a high return on value to the organization [4]. Classic 

success is the completion of the project on-time and on-budget based on predefined baselines and quality. The report 

compared pure success with the classic definition of success and found drastic changes in the rates of reported success 

[4]. When the new definition of success is used, the project success rate decreased to 14% from 36%, and the 

challenged project rate increased from 45% to 67% [4]. This report reveals that the traditional approach of estimating 

the performance and baselines produces inconsistent and inaccurate results for modern projects. To achieve pure 

success, the management team needs to continuously learn from executed tasks and change their product requirements 

to adapt to changes in the project environment. Pure success requires lean process improvement and learning. Few 

recent studies used computer-assisted algorithms to establish learning in a project, like learning and feedback loop 

system [48], work package size optimization for value improvement [49], Bayesian approach for portfolio risk 

identification and reduction [42], [50], Bayesian approach for traditional waterfall-type earned value planning [51] and 
modeling uncertainty [16]. The existing studies for success of leagile project system mainly focused on the risk factors, 

continuous improvement factors, complexity aspects, pros and cons, definitions, acceptance of agile or lean, and causes 

of failures [6], [15], [18], [27], [37], [38], [48]. However, we found no study which provided a practical and convenient 

solution for engineering managers on the implementation of learning to reduce these challenges and complexities. This 

finding supports systematic literature review study by Stefan et al. [20], suggesting IT project complexity is increasing 

and there are no practical tools and models available yet for managers to achieve true project success. 

This article argues that the increase of failure in a large complex project is not just because of the task performance; 

rather, it is because of the static scale used to measure the tasks. The scale should increase or decrease based on the 

recent experience of prior tasks. To address these challenges, this study supplies a simplistic learning tool to measure 

the performance of modern projects. Specifically, the objective of this study is to seek a more accurate estimation of 

project baselines against which iterative tasks can be measured in a dynamic environment based on continual learning 

from prior experience. 

The study moreover aims to answer whether the evolving baseline provides a better performance measurement scale 

than the static baseline of the traditional plan-driven approach. A likelihood ratio test and Bayesian model is developed 

(next section) for the continuous estimation of evolving project baselines based on learning from recent past 

performance. 
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3. Methodology 

This study is one of the first efforts to establish a practical performance measurement using the Bayesian continual 

learning approach for leagile portfolio management. This article focuses on the actual process improvement for a whole 

portfolio using the project-level tasks’ experience. The proposed framework provides a simple formula to achieve 

learning and reduce uncertainty. This study follows the principle of Pasteur’s quadrant from systems engineering 

(Figure 2) to both enhance project management knowledge and realize the immediate use of Bayesian continuous 
learning [52]. Furthermore, the likelihood ratio test is performed to compare the accuracy of the proposed model against 

a traditional model (refer to section comparison of approaches). 

Pasteur’s quadrant was named after Louis Pasteur, whose work exemplifies both advancements in knowledge on the 

subject matter and results with high social benefits by making them immediately available for use. 

 

Fig. 2. Pasteur’s quadrant 

The static baseline approach in project management is an example of the Edison quadrant, which has high immediate 
usability but little improvement in knowledge, as presented by the bottom right block of Figure 2. Our proposed 

evolving baseline approach incorporates both the immediate applicability and improvement in knowledge located in the 

top right block of Figure 2. Specifically, Bayesian theory is used in our approach to estimate the evolving baseline by 

continually measuring the performance of executed tasks and predicting the confidence bounds of the baseline based on 

the newly learned posterior distributions. Figure 3 provides an overview of this study, which illustrates the proposed 

Bayesian evolving baseline approach, the traditional static baseline approach, and their comparisons to choose the 

model with the best performance. 

This section is further divided into three subsections—the first subsection presents the details of the process flow and 

steps taken during analysis. The second subsection develops the proposed evolving baseline approach further by 

mathematically describing how the evolving baseline is generated from learning and Bayes rule. The third subsection 

presents a brief description of the traditional baseline approach used for comparison. 
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3.1 Methodology flow steps 

In a traditional static baseline approach, the project team uses the historical lessons learned from past projects or make a 

rough order-of-magnitude estimation to establish baselines (e.g., mean, upper, and lower bounds of the probability of 

task failure) for future measurement. The baselines are often determined during the initiation and planning phases; they 

are then used throughout the entire life of the project. 

For the traditional static baseline approach, as seen in the left section of Figure 3, the same POC baseline is used until 
the end of project life to measure performance. By contrast, in the proposed approach, the right section of Figure 3 

continually updates its as soon as new learning occurs. In each measurement iteration, the count of failed tasks and total 

tasks from the completed bucket is grabbed and passed instantly to the Bayesian model. Measurement iteration in this 

article is defined as the cycle of measurements done for the completed tasks. It is not the same as the terms “iteration” 

or “sprint”, which are used in adaptive models and agile scrum. A new event means a task or a set of similar jobs have 

been completed at a certain rate of success or failure when a measurement is collected. 

 

Fig. 3. Methodology: comparison of static and evolving baselines 

Bayesian model 
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In the last step of this study, we compare the traditional static baseline approach and the new Bayesian evolving 

baseline approach to identify the best performing model (refer to gray blocks in Figure 3 and section comparison of 

approaches). A baseline is often described by its mean and confidence bounds. The baselines generated by both 

approaches are compared with each other to evaluate their usability and accuracy. The model with the most realistic 

baseline is chosen as the best performing model. 

3.2 Proposed evolving baseline method 

The iterative nature of tasks and activities in a leagile type model creates the possibility of qualitative measurements of 

the smallest tasks or activities. Furthermore, quantifying task scope/deliverables depends on the approach to the work 

breakdown structure (WBS) [53]. It is practically impossible to implement continuous improvement without a 

quantifiable work package or task [53]. In project management, a “rule of thumb” for task estimation is the “80-hour” 

rule: it suggests decomposing the whole project scope until task size reaches 80 hours per deliverable. It helps in 

determining when to stop dividing deliverables into smaller elements. It is also followed in an agile scrum, where the 

standard sprint size is two weeks long. This study uses data with the “80-hour” rule to quantify the task as a failure or 

success (refer to the section on research data for details). This study uses success and failure probabilities to measure 

the performance of tasks and projects. A Bayesian model is used to derive the evolving baselines; the equations and 

computational steps are described in detail here. 

As shown in Figure 3, the Bayesian model combines the lessons from the new events and past knowledge to continually 
predict the new posterior parameters, which provides an updated and more accurate estimation of the baseline 

parameters such as average success and/or failure probabilities as well as their upper and lower bounds. The posterior 

parameters also become prior parameters (past knowledge) for future measurement iterations. The mathematical details 

are described as follows. 

Each task can either succeed or fail, which can be considered a Bernoulli trial. Therefore, the probability of 

observing  failures in  tasks can be obtained from the binomial distribution as 

 (1) 

where  is the probability of failure per task. For complex projects/portfolios in a dynamic environment, the failure 

probability of each task may change as the projects develop. The failure rate may depend on shifts in market conditions, 

technological advancements, legal requirements, project environment, and resources. Therefore, it is crucial to 

continuously update the failure probability  based on learning from the immediate past. This can be achieved through 

the Bayesian learning algorithm described below. 

In the Bayesian framework, priors and likelihood  function are required to compute the posterior  as 

follows:  

Posterior  ~ Likelihood  * Prior  (2) 

where symbol “~” represents “directly proportional to” and the likelihood of observing  failure from  tasks can be 

calculated using the binomial distribution as 

, where  (3) 

For binomial likelihood, a natural choice of the prior for failure probability  is the beta distribution [54], where the 

prior (beta distribution) probability density function (PDF) ) with shape parameters  > 0 is given as 

 (4) 

where 
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Further, using Equation (2), the posterior distribution of  can be derived as follows [54]: 

  (5) 

The posterior distribution of failure probability  also follows a beta distribution with parameters  and 

  

  (6) 

.   (7) 

where  and  are the prior parameters  and  in Equations (4)–(5). The posterior beta distribution can then 

be used to estimate the baseline measurement, i.e., the failure probability and confidence bounds. Specifically, the 

following formulas can be used to estimate the baseline parameters. 

The mean of the posterior beta distribution (i.e., the mean failure probability) can be computed using [54, p. 530]: 

  (8) 

The credibility interval of the failure probability  at 90% credibility can be calculated using the following equations 

[54, p. 530]: 

Lower Credibility Interval: LCI =         (9) 

Upper Credibility Interval: UCI=       (10) 

where BETAINV is the inverse of the beta distribution. The posterior parameters are passed to the next iteration as new 

priors to continuously update the beta distribution of failure probability for baseline estimation. The proposed model 

offers a continually evolving baseline based on newly learned information as compared to the static baseline approach 

where the baseline measurements stay constant throughout the project lifetime. 

3.3 Traditional static baseline method 

In the traditional static baseline approach, the binomial distribution (Equation (1)) is used to calculate the POC baseline. 

Similar to the Bayesian approach where a 90% credibility interval is used, for the traditional approach we also used a 

90% confidence interval. The upper and lower bounds of failure probability  at the confidence level 90%, given  

failures in the  total tasks, can be calculated using the beta distribution as [54]. 

Lower bound: BETAINV   

Upper bound: BETAINV   

The POC baseline is static throughout the life of the project. 

3.4 Research data 

We used real case data from the ABC Health Care company for our “SharePoint optimization (SO)” portfolio. “ABC” is 

not a real name as the company wishes to stay anonymous. The main goal of the SO effort was to optimize the usage of 
SharePoint by incorporating continual learning from the performance of each SO task. The SO effort was initiated 

because of a sudden increase in the chargeback of the SharePoint service, which increased from $67 per Gigabyte (GB) 

in 2016 to $85 per GB in 2020. The business case for this SO portfolio was to realize a direct benefit of $19.28 M 

within two years. 

Furthermore, the SO effort focused on establishing a self-learning process to continually optimize the performance of 

all SharePoint accounts. Six weeks of data were gathered for the first “outreach” phase of the SO effort. It included 
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3,113 SharePoint accounts with at least two site control admins and multiple site business owners. The SO portfolio 

followed a continuous delivery model with leagile strategies for process optimization. All SharePoint tasks of projects 

continually moved from the “to-do” bucket to “in-progress” and then to the outreach “completed” bucket. 

Each task was associated with each SharePoint account and was completed independently by different site control 

admins and site business owners from a different department. Each task contained 17 questions to gather analytical data 

regarding the effective usage of the SharePoint account. The site control admins and site business owners had to run the 
few reports from their SharePoint dashboard to complete the task. The completed bucket contained all the project tasks 

completed successfully, and the failed tasks stayed in the in-progress bucket until they were fixed. We counted the task 

as failed if the task exceeded the due date. The due date for each task was set to two weeks after generation. Successful 

tasks were color-coded green. The failed and challenged tasks were grouped together and marked red. The overall 

portfolio status was measured every two weeks and reported in strategic leadership meetings. A breakdown of the 

project tasks for each measurement iteration is summarized in Table 1. A measurement iteration in this study is defined 

as a status-reporting cycle of the whole portfolio, a two-week cycle. 

Table 1. SO outreach data 

Measurement iterations  SO projects Challenged (red) Succeeded (green) 

Iteration 1 59 17 42 

Iteration 2 303 66 237 

Iteration 3 267 22 245 

The POC for process improvement and optimization was used before the start of the SO portfolio. Forty early adopters, 

who wanted to move to optimization as soon as possible, were engaged in the POC effort, which generated ten failed 

project tasks out of the 40 POC tasks, and this failure rate was used as the starting baseline for the whole project 

portfolio. 

4. Results and analysis 

4.1 Results for the traditional static baseline 

The traditional plan-driven approach uses a historical point of reference to estimate all the baselines during the 

inception of the project. The baseline stays fixed and is the only baseline used to measure the performance of future 

tasks for all measurement iterations. Baseline estimates in the traditional approach is given in Table 2 and Figure 4, 

where the point estimation and the confidence interval of the point estimation are calculated respectively and stay the 

same over several iterations. 

The point estimation of the failure probability of 0.25 is obtained, given that 10 out of 40 tasks failed in the project 

portfolio. As explained in Section 3 (Equation (5)), POC effort predicts that the estimated failure probability will fall 

within the lower confidence interval of 0.142 to the upper confidence interval of 0.387 at a 90% confidence level. The 

mean, lower, and upper bounds are presented in Figure 4 by solid, dashed, and dotted lines, respectively. 

Table 2. Traditional static baseline results 

Binomial distribution parameters Historical knowledge Iteration 1 Iteration 2 Iteration 3 

Point Estimate (Mean) 0.25 0.25 0.25 0.25 

Lower Conf. Interval 0.142 0.142 0.142 0.142 

Upper Conf. Interval 0.387 0.387 0.387 0.387 
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 Fig. 4. Static baseline based on the POC effort 

In a plan-driven approach, significant efforts are invested in controlling the baselines of project plans [22]. Changes in 

such models must usually go through a strict change control process, which is not efficient in a dynamic leagile 

environment. By contrast, enterprise leagile projects and portfolios continue to adapt to the changes in requirements and 

the environment. For the leagile model, it is critical to continually update the baseline and measure the success and 
failure adaptively as the projects and portfolios progress. In the next section, we illustrate the proposed continual 

learning strategy to dynamically update the baseline after each iteration as new failure data become available. 

4.2 Results for the proposed evolving Bayesian baseline 

In the previous section, the POC identified the prior failure probability of a portfolio, i.e., on average, 10 out of 40 SO 

outreach tasks failed. This information was used in the Bayesian learning approach to update the posterior distribution 

of failure rate at each iteration. The posterior produces a new baseline, which can be used to measure the performance 

of future tasks. 

It is assumed that the initial failure probability from POC data (previous section) follows a beta distribution with 

parameters = 10 and = 30 before iteration 1 of Weeks 1 and 2. After iteration 1, failure data were collected 

(see Table 1), where 17 failures were observed out of a total of 59 SO targets. Following the equations given in Section 

3, the posterior distribution of the failure probability  can be obtained as a beta distribution with the shape and scale 

parameters calculated as follows: 

 = 27 

 

Here, is increased by the number of observed failures  and  is  increased by the 

number of successes , as shown in Equations (6) and (7). 
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Given the parameters of the posterior distribution of , the average failure probability can be calculated using Equation 

(8) as follows: 

 

Accordingly, the LCI and UCI at 90% confidence level are 

Lower Credibility Interval alpha=0.05 = 0.202 

Upper Credibility Interval alpha=0.95 = 0.349 

This procedure is repeated for multiple measurement iterations to update the baselines. As shown in Table 3, for each 

iteration, the posterior is updated, generating new Bayesian baselines for future tasks. 

 

Table 3. Predicted Bayesian posterior and beta parameter results 

Parameters Prior 
Posteriors 

Iteration 1 a Iteration 2 b Iteration 3 c 

 10 27 93 115 

 

30 72 309 554 

 

0.25 0.273  0.231 0.172 

LCI  0.202 0.198 0.148 

UCI  0.349 0.267 0.196 

 

a Weeks 1 and 2, where failed x=17, total n= 59 
b Weeks 3 and 4, failed x= 66, total n=303 
c Weeks 5 and 6, failed x=22, total n=267 

 

Figure 5 shows the evolution of the baseline based on the information learned from each iteration (every two weeks). 

The lesson from Weeks 1 and 2 suggests an average failure probability of 0.273 with an LCI of 0.202 and a UCI of 

0.349. The estimated credibility interval from Weeks 1 and 2 will be used as the new baseline to measure the 

performance of Weeks 3 and 4. During Weeks 3 and 4, more tasks were assigned, and a few failures occurred; the mean 

reduced to 0.231 with a credibility interval of (0.198, 0.267) at a 90% confidence level. The failure probability for 

Weeks 3 and 4, shown by the middle three lines in Figure 5, stayed below the upper bound of credibility interval 

predicted by Weeks 1 and 2. This means that Weeks 3 and 4 performed better than Weeks 1 and 2. Moreover, the gap 
between the UCI and LCI of Weeks 3 and 4 is smaller than that of Weeks 1 and 2, which is an indication of the 

improvement in task performance during Weeks 3 and 4. 

Similarly, information learned from Weeks 3 and 4 creates a new baseline for Weeks 5 and 6. The performance of the 

tasks for Weeks 5 and 6 is evaluated against the baseline from Weeks 3 and 4, as shown in Table 3. The mean failure 

probability from Weeks 5 and 6 is estimated as 0.172, which is also a sign of improvement in the performance during 

these Weeks when compared with the means and Credibility intervals of Weeks 3 and 4 and Weeks 1 and 2. 

Furthermore, the gap between the UCI and LCI has been reduced significantly in Weeks 5 and 6 when compared to 

those of prior iterations. 

When looking at the whole iteration sets, as presented in Figure 5, the mean failure probability continued to decrease, 

nearing 17% in the last iteration. The failure probability decreased continually, and the performance of the task 

increased iteration by iteration. Similarly, the width of the credibility intervals gap reduced with each new iteration. 
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This confirms that the variations in task failure probability are decreasing, and that the task performance is becoming 

more consistent. 

 

 

Fig. 5: Evolving baselines using the Bayesian learning approach 

 

Fig. 6. Predicted PDF of the posterior distributions for each iteration result 
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Moreover, as the number of iterations increase, the PDF of the posterior distribution of the failure probability  moves 

left and its tails PDF become thinner (Figure 6). The posterior distribution of iteration 3 has a peak centered at 0.17 with 

thinner tails than the posterior distributions of iterations 1 and 2. This again shows continuous growth towards a lower 

rate of failure and tighter confidence bounds. In simpler terms, iteration 3 predicts that the failure probability of 

iteration 4 will stay within 0.148 to 0.196 at a 90% confidence level. If the failure rate in the fourth future iteration goes 

above 0.196, then the project portfolio is considered to be challenged, in contrast to the traditional approach, where the 

portfolio would not be considered challenged until the failure rate reaches 0.387. 

The evolving baseline of the Bayesian approach showed a decrease in the posterior mean and a decrease in the spread 

between the upper and lower limits. This stands for the fact that with each iteration, the performance improves. That is, 

the failure rate ( ) decreasing as effort count ( ) increases—a genuine intention of the leagile delivery model [54]. 

4.3 Comparison of approaches 

The traditional plan-driven approach identifies a baseline during the start of the project, and the baseline stays static 

throughout all iterations (Table 2 and Figure 4). By contrast, the evolving baseline approach continues to predict new 

baselines for future measurement iterations. As an example, the experience of the second measurement iteration predicts 

the new baseline for the third iteration. The failure probability of the task for the third iteration is predicted to be within 

0.198 to 0.267 at a 90% confidence level. The task portfolio is considered to be challenged if the rate of actual task 

failure exceeds 0.267 in the third measurement iteration, versus the traditional approach where the task will not fail until 

the rate exceeds 0.387. As a result, the baselines evolved using the proposed Bayesian model are more accurate and 

realistic than those of the traditional approach. 

A likelihood-ratio test (LRT) [55, p. 511] was conducted to find a better model of evolving project baselines. During 

LRT, we compared the llikelihood values of the traditional model against the proposed Bayesian model. The null 

hypothesis is defined as the performance of the Bayesian model is the same as the traditional model, and the alternative 

hypothesis is Bayesian model has better performance. The likelihood-ratio test statistic (LRT statistic) is calculated as  

, where  is the likelihood values of the traditional model and  is the likelihood 

value of the Bayesian model. The LRT statistic is 5.919. This provides a significantly small p-value, 0.015. Reject the 

null hypothesis at . The LRT test supports the fact that the Bayesian approach is a better model than the 

traditional model. 

The Bayesian approach provides a more accurate measurement of project and portfolio performance than the plan-

driven method. The Bayesian approach responds quickly to changing project variables that can positively or negatively 

impact project performance. These variables can be changes in the team environment, market, resources, 

law/regulations, technology, weather, or the recent coronavirus impact. The confidence bounds of the evolving baseline 

can increase or decrease and move up or down based on learning from the immediate past, unlike the static baseline of 

the traditional approach, where the confidence bounds stay the same throughout the project lifetime. Continuous 

forecasting is much easier if managers can immediately get a new predicted baseline for future iterations. 

Our proposed approach recommends the maintenance of only two parameters  to estimate evolving baselines 

continually. Managing only two parameters simplifies the “applicability” of the proposed approach. The computation 

required to calculate the updated baseline is straightforward; anyone with Excel can use the built-in BETAINV function 

to obtain the posterior distribution, mean failure probability, and upper/lower confidence limits for new baselines. 

5. Conclusions 

It is evident in the project management world today that most organizations have moved towards agility and lean 
delivery models. Nevertheless, the leaders of project management offices and project managers are still trying to catch 

up with this trend. This transformation is rapid, and limited resources and tools are available to aid continuous planning 

and decision making. This article provided an applied framework (a Bayesian evolving baseline approach) for modern 
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leagile projects. The analysis demonstrated the advantages of the proposed approach over the traditional static baseline 

approach using SO portfolio data. The LRT findings of this study suggest that the evolving Bayesian baseline is a more 

accurate and realistic scale for measuring the success or failure of a leagile project and portfolio than the traditional 

static baseline. The result suggests that the continuous evolution of baselines based on learning can better estimate task 

performance for future planning. The proposed model can be easily integrated into any existing leagile project for 

continuous decision making. Furthermore, it is applicable to any type of project delivery model as long as the tasks of 

the project can be measured in terms of success or failure; they are independent and very similar in nature. 

5.1 Discussion 

Most complex enterprise projects are challenged more now than they were in the past few decades. The use of the 

outdated static baseline models to measure leagile project progress could be one of the reasons for the increase in 

project failures. The static baseline of the traditional plan-driven model does not apply to all types of contemporary 

projects and portfolios, especially when there is a constant change in the project scope, budget, resources, and 

environment. It is a known fact that a static baseline does not account for the recent changes in the project environment. 

This study showed that the performance measurement of a static baseline produces suboptimal results for modern 

leagile projects, as continuous learning and improvement are not considered in the traditional approach. 

This article recommends the use of the Bayesian learning approach to estimate a continually evolving baseline and then 

use the learned baseline to measure success and reduce complexity. Our analysis found that the proposed evolving 
baseline provides more accurate performance predictions for the future effort of leagile projects/portfolios than the 

traditional static baseline. The evolving Bayesian baseline can closely capture the nature of project and portfolio 

progress despite the ever-changing project variables and environmental factors. The Bayesian learning-based evolving 

baseline approach can achieve both continuous learning and continuous planning in a joint framework for any leagile 

project portfolio. 

5.2 Implications of the study 

Learning from recent events has become a crucial element in complex projects with the unknown project scope. 

Projects that follow the leagile model for continuous delivery can benefit from the proposed strategy. This study 

developed a continual learning approach to estimate evolving baselines in a complex and dynamic project environment 

and proved that constant improvement is achievable through iterative learning. Evolving baselines generated from the 

continuously updated posterior predictions can incorporate “lines of sight” and “feedback loops” for a whole portfolio 

of leagile project systems. 

This article is not limited to the data (SO optimization tasks) and the leagile model we used for our research. The 

mathematical solution provided by this study can be used in all types of projects and their portfolio as long as they 

maintain measurable task performance metrics like any simple work order to a complex project system. It can be 

implemented practically in any project as long as the work packages or tasks are iterative, measurable, and independent. 

It can benefit project and portfolio models such as DevOps, microservices, and leagile, which require continuous 

planning, continuous improvement, and continuous delivery. Furthermore, this study opens a new avenue for machine 

learning and artificial intelligence technologies to be applied in the software project management field to optimize 

existing project management processes and performance measurement standards. 

In contrast to the static nature of the traditional approach, continual learning from recent experiences of proposed 

approach provides more accurate and reliable estimates of project and portfolio baselines. The continual learning from 

recent experiences is more recent and closely trails the changes in the project environment, thus reduces uncertainty. 
The justification for integrating Bayesian theory into project delivery models is that the Bayesian approach allows all 

possible subjective and objective input variables to be incorporated while producing quantifiable results. The outputs of 

the Bayesian model are measurable posterior metrics that are generated using continuously updated inputs due to 

changes in environments, changes in project structures, and even unknown priors. The prediction becomes more 
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accurate as it matures with new learning. The results are impactful, especially when the project environment and scope 

are dynamic, and the baselines continue to change. Hence, the major implications of the study are the following: 

 The study provides a straightforward and accurate tool for forecasting the performance of leagile projects and 

portfolios; 

 The study uses the binomial distribution, which is widely used in project management to measure task 

performance and status; 

 The evolving baseline approach is easy to use, and users with minimal statistical knowledge can implement it 

in leagile projects or portfolios; 

 The proposed tool can contribute to informing decision making and planning. For example, it will empower 

managers and leaders to obtain reliable estimations of the performance of in-progress tasks/teams/projects 

and accurately plan upcoming projects in the portfolio pipeline. 

5.3 Limitations and further research 

This study was limited to leagile-type projects and portfolios. It used the binomial distribution to ensure the 

straightforward applicability of the evolving baselines in leagile project and portfolio. The binomial distribution can 

easily incorporate the most popular approach of task status reporting (task failure or success) to model task performance 
and predict future events. However, other models like the exponential or proportional hazards models could be used to 

describe failure mechanisms concerning project time, budget, and cost. Additional reliability models and measurements, 

such as survival models, hazard functions, and reliabilities, were not fully explored in this article. Future studies could 

incorporate such reliability models to predict overall project portfolio system reliability. A comparison study can be 

done to identify the most accurate model with reliable performance estimates. 

As a final remark for future works, it is important to note that the task experience and learned performance estimates 

used in the article are highly quantitative. They must be quantifiable enough to be used easily in the proposed solution 

in order to make exceptionally reliable decisions. Future work may attempt to use a qualitative learning approach or 

deep machine learning approach in a hugely dynamic project to identify if evolving baselines perform better than static 

baselines. 
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