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Abstract: 

Data mining is an efficient methodology for uncovering and extracting information from large databases, which is 

widely used in different areas, e.g., customer relation management, financial fraud detection, healthcare management, 

and manufacturing. Data mining has been successfully used in various fraud detection and prevention areas, such as 

credit card fraud, taxation fraud, and fund transfer fraud. However, there are insufficient researches about the usage of 

data mining for fraud related to internal control. In order to increase awareness of data mining usefulness in internal 

control, we developed a case study in a project-based organization. We analyze the dataset about working-hour claims 

for projects, using two data mining techniques: chi-square automatic interaction detection (CHAID) decision tree and 

link analysis, in order to describe characteristics of fraudulent working-hour claims and to develop a model for 
automatic detection of potentially fraudulent ones. Results indicate that the following characteristics of the suspected 

working-hours claim were the most significant: sector of the customer, origin and level of expertise of the consultant, 

and cost of the consulting services. Our research contributes to the area of internal control supported by data mining, 

with the goal to prevent fraudulent working-hour claims in project-based organizations. 
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1. Introduction 

Internal fraud has become one of the crucial and increasingly serious problems in numerous organizations. Internal 

control encompasses various policies and procedures designed for detecting and preventing fraud conducted by the 

organization’s employees or external hires, which have to be constantly updated and monitored [1], in order to 

efficiently support the organization in its risk management activities. Internal fraud control is widely used for the 

purpose of forecasting, detecting and preventing possible fraudulent behaviors conducted by organizations’ employees 

[2]. However, numerous organizations still have inefficient internal control systems [3]. 

Data mining techniques are widely used for external fraud detection and prevention. Literature review regarding data 

mining methods for the detection of financial fraud revealed that data mining techniques have been mostly used for 

detecting insurance fraud, corporate fraud, and credit card fraud [4]. Studies about internal control fraud are mostly 

focused on financial organizations and accounting [5], [6]. One of the examples of utilization of data mining for 

combating internal fraud investigates the utilization of data mining methods for detecting fraud by employees in a 

financial organization [7]. Project-based organizations are especially prone to internal fraud since due to the lower level 

of control that is the result of the flatter organizational structure [8], and in some cases a poor management practices [9] 

or complex governance procedures [10]. However, research about fraud detection and prevention in project-based 

organizations are scarce [11], [12]. 

In order to shed some light on the usefulness of the data mining approach for the detection of internal fraud in project-
based organizations, we develop a case study, based on the dataset from one project-based organization. The dataset 

contains the characteristics of the working-hour claims (client, expert, job characteristics) in one project-based 

organization, which is analyzed by chi-square automatic interaction detection (CHAID) decision tree and link analysis. 

Using these two methods, we develop data mining models that discover the client, expert and job characteristics that are 

significant predictors of fraudulent working-hour claims. The contributions of this paper are two-fold. First, we 

contribute to the area of internal fraud detection and prevention in project-based organizations, while most of the 

previous research has been oriented towards external fraud prevention. Second, we provide practical contributions, 

since our research results in the form of decision tree and association rules could enable organizations for developing 

their own solutions for automatic internal fraud-detection (e.g., using SQL code). 

The paper is organized into five sections. After the introduction, we present the literature review, with the goal of 

internal control, data mining and fraud prevention. In the methodology section, we overview the characteristics of the 

dataset, as well as the used methods (link analysis and CHAID decision tree). In the fourth section, we present research 
results, with the extensive elaboration of the rules extracted from the decision trees and link analysis. The last section 

concludes the paper with an overview of research, practical contributions, paper limitations and future research 

directions.  

2. Literature review 

2.1 Internal controls and fraud 

Fraud represents a severe problem in companies; whether committed outside or inside an organization. Many 

organizations from various industries such as credit transactions; telecom, insurance, and management are affected by 

fraudulent activities [13]. Fraudsters could even be financial or other institutions themselves, involved in money 

laundering or financial statement frauds. A pilot survey for measurin financial fraud in the USA found out that the 

fraudster most commonly executed frauds online (30%) with the credit card payment (32%) [14]. Consider that those 

numbers are not even accurate because fraud is often not reported because of the possible negative impact on the 
organizations’ image. On the other side, fraud committed inside the organization is also common, generating a high 

loss, both in terms of money and loose of trust [15]. 

The purpose of internal control is to detect and prevent fraudulent behavior, and thus support the company’s 

performance and achieve established goals. Opportunities for fraud occur in organizations, which have weak 
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compliance with internal controls [16]. Internal fraud is a growing problem in many companies and organizations, 

which indicates that it is necessary to investigate this problem further and deeper in order to get better internal control 

systems [17]. On the other hand, many organizations lack the strategy to develop and maintain an efficient internal 

control system. Insufficient and flouted internal controls give opportunities for personnel to commit unethical practices 

and fraud in an organization [3]. There are numerous recommendations related to increasing the efficiency of internal 

control systems, such as the usage of global positioning tracking units (GPS), monitoring of unutilized purchase orders 
and pre-approval of overtime work. However, progress is slow due to difficult access to data from previous cases, so it 

is hard for problem solvers to develop new methods and solutions [2].  

2.2 Data mining 

The main task for data mining is to extract the most significant patterns from databases in various organizations and 

institutions. Data mining is acting as a tool that delivers data for further investigation, interpretation, and understanding 

[18]. Kantrarzic et al. [19] define data mining as “iterative process within which progress is defined by discovery, either 

through automatic or manual methods”, acknowledging that the exploratory analysis scenario, without predetermined 

notion on the possible results, is the domain where data mining is the most useful. There are three fundamental goals for 

data mining processes: description, prediction, and prescription. Data describing human-interpretable patterns are 

focused on the description, while the usage of variables in the database to predict unfamiliar or forthcoming values of 

other variables is primarily focused on prediction [20]. The main objective of prescription is providing the best solution 
to the actual problem. All three goals are possible to accomplish by data mining techniques, such as classification, 

prediction, outlier detection, optimization, and visualization.  

A number of challenges occur when considering the development and implementation of data mining [21], who stress 

the following: performance time, management support, selection and execution of algorithms. Although the first 

concern is usually the performance time (the importance of real-time action, online vs. offline methods), another big 

challenge that emerges is the cost management related to employee costs, consultants, software and hardware. The 

second concern would be the choice of the data mining technique. Data mining techniques have their own challenges in 

the development process: not all the data needed to perform tests is available to the public, and there is also a big lack of 

well-researched methods, algorithms, and techniques. The chosen method will depend on the structure of the data and 

the type of results that are wanted from the analysis. Finally, the main concern is focused on the actual usage of data 

mining results in the decision-making, it is rarely technical and usually depends on management willingness to support 

the application of data mining.  

2.3 Data mining for internal fraud detection 

In the last decade, significant progress took place, and automated fraud detection systems based on data mining models 

have gained enormous popularity, especially within financial institutions [4]. In terms of data mining, fraud analysis is a 

process, which consists of a sequence of actions, or a group of characteristics that could be used for predicting or 

discovering potential or explicit threats of fraudulent activities. Data mining has remarkable results in diverse fields 

related to security and fraud, financial crime detection (money laundering, suspicious credit card transactions and 

financial reporting fraud), intrusion and spam detection [22]. However, data mining implementation in the area of 

internal fraud risk reduction is mostly focused on the analysis of financial statements [23], [24], [25]. Kranacher et al. 

[22] distinguish three categories of internal fraud on which most studies are focused: financial statement fraud, 

transaction fraud, and abuse of position. Data mining techniques can decrease the probability of internal fraud. Various 

methods have been used for developing data mining models for internal fraud prevention and detection, such as 

multivariate latent clustering, neural networks, logistic models and decision trees [26], [27]. 

Data mining has become one of the most important paradigms of advanced intelligent business analytics and decision 

support tools for internal fraud prevention [28], [29], [23]. Many organizations acknowledge data mining as one of the 

main technologies relevant to internal fraud prevention nowadays and in the future. The Institute of Internal Auditors –

Australia [30] recommends the usage of data mining for auditing process, and The Chartered Global Management 
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Accountant has reported that data mining lies within the top ten focus priorities fundamental for the data-driven era of 

business and was ranked as relevant by more than half corporate leaders [31].  

3. Methodology 

3.1 Data 

In order to inspect internal fraud, we have conducted a case study analysis on the data available from one large 

company. This company is organized using a project-based organizational structure, which means that projects present 
the key organizational activity [32], [33]. The company has more than 300 employees and implements and develops 

business-related software applications. Each month, employees working on a project-basis provide a report on their 

work including the number of hours, the characteristics of clients, the complexity of their work, and the amount claimed 

for an hour and in total. Based on this information, the working-hours claim is filled each month. The company has 

already developed its own methods for detecting suspicious working-hour claims, but those are focused on the detection 

of already committed fraudulent activities, while more research is needed in order to identify the characteristics of 

fraudulent claims in order to detect potential new ones. Therefore, the goal of this research is to determine the 

characteristics of the suspected working-hour claims, which are the candidates for in-depth fraud analysis, and to 

develop a model for preventing fraudulent behavior.  

The company defines the suspect claims in the following manner. A working-hours claim is suspect if at least one of the 

following criteria has been met: (i) if a consultant is late in submitting the working-hours claim more than seven days 
from the day when the project is finished, and (ii) if a consultant cancels already claimed working-hours. In the case 

when at least one of the abovementioned criteria is fulfilled, the working-hours claim is considered as a suspect for 

fraud. The management of the company believed that it would be beneficial to identify the characteristics of the 

potential fraud (suspect) working-hour claims before the consultant is already late in submitting the claim.  

Dataset consists of 1,194 working-hours claims, which comprise 5% of the total working-hours claims in the company 

in the observed year. According to Table 1, 294 working-hours claims, or 24.62%, were suspect for fraud whereas 900 

working-hours claims, or 75.38%, were non-suspect for fraud. The variable Suspect defines these two categories of 

working-hours claims (if the claim is suspected it has value 1, otherwise it is equal to 0). 

 

Table 1. Suspect and non-suspect working-hour claims in the sample 

Variable Suspect Count Percent 

Suspect (value 1) 294 24.62 

Non-suspect (value 0) 900 75.38 

Total 1,194 100.00 

Source: Authors’ work, based on the internal data source. 

 

The independent variables in the working-hour claims are used for developing data mining models:  

 Type of customer – variable Customer; 

 Type of consultant – variable Consultant; 

 The month when the working-hours were claimed – variable Month; 

 The hourly-rate – variable UnitPriceCoded; 

 The consultant’s level of expertise – variable ExpertLevel; 

 The number of hours claimed – variable NoHoursCoded; 

 The total amount claimed – variable TotalAmountCoded. 
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The following analysis will present the distribution of the independent variables according to the fraudulent working-

hour claims.  

The distribution of the variable Customer is presented in Table 2. Customers ordering the work on the project 

(development and/or implementation of software applications) are divided into three categories: governmental 

institutions, internal projects, and private enterprises. Internal projects are suspected in a 50.68% case. The conducted 

chi-square test confirmed, at the significance level of 1%, that there is at least one category of customers whose 

structure according to the variable Suspect is different from the others (chi-square=77.435, df=2, p-value<0.001). 

 

Table 2. Types of the customer – variable Customer 

Customer origin Suspect Not suspect Chi-square P-value 

Govern 4.76% 95.24% 77.435 <0.001 

Internal 50.68% 49.32%   

Private 22.80% 77.20%   

Totals 24.62% 75.38%   

Source: Authors’ work, based on the internal data source. 

 

The variable Consultant describes the country of origin of experts, who have been claiming working-hours, since in 
some cases domestic consultants (from Croatia) and in some cases, foreign consultants are hired (Table 3). In cases 

when domestic consultants are observed, 23.46% of their working-hour claims were suspected, while foreign 

consultants were in 41.56% cases in the suspected working-hours claim category. The chi-square test has shown that, at 

the significance level of 1%, domestic and foreign employees have a statistically significantly different structure 

according to suspected and non-suspected working-hours claims (chi-square=12.719, df=1, p-value<0.001). 

 

Table 3. Types of consultant – variable Consultant 

Consultant origin Suspect Not suspect Chi-square P-value 

Domestic 23.46% 76.54% 12.719 <0.001 

Foreign 41.56% 58.44%   

Totals 24.62% 75.38%   

Source: Authors’ work, based on the internal data source. 

 

The variable Month represents the month in which a consultancy service was provided (Table 4). For the purpose of the 

analysis, months are coded as discrete values ranging from M1 to M12. The highest share of suspected working-hours 

claims can be found in months M1 (65.77%) and M12 (30.59%), which refer to January and December. It is highly 
probable that this large percentage of suspect claims are related to the beginning and the end of the fiscal year. On the 

other hand, the highest share of non-suspected working-hours claims is in months M10 (88.42%) and M4 (86.40%). 

According to the conducted chi-square test, those shares seem to be statistically significantly different, at the 

significance level of 1%, in different months (chi-square=134.670, df=11, p-value<0.001). 
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Table 4. The month when the working-hours were claimed – variable Month 

The month of the claim Suspect Not suspect Chi-square P-value 

M1 65.77% 34.23% 134.670 <0.001 

M2 28.13% 71.88%   

M3 17.31% 82.69%   

M4 13.60% 86.40%   

M5 16.81% 83.19%   

M6 20.39% 79.61%   

M7 14.29% 85.71%   

M8 28.09% 71.91%   

M9 25.93% 74.07%   

M10 11.58% 88.42%   

M11 19.28% 80.72%   

M12 30.59% 69.41%   

Totals 24.62% 75.38%   

Source: Authors’ work, based on the internal data source. 

 

The variable UnitPriceCoded was used to take into account the cost of consultants (Table 5). In the analysis, this cost is 

expressed per hour. The minimum cost per hour is 19.9 EUR, and the highest is 173.9 EUR per hour. Because there are 

many different values, it has been decided that four groups of costs will be formed and that the unit price will be coded 

in four categories (1-50 EUR per hour, 51-100 EUR per hour, 101-150 EUR per hour, and 151-200 EUR per hour). The 

largest share of suspected working-hours claims was found in the category of the cost of 151-200 EUR (30.00%) 

whereas the largest share of non-suspected working-hours claims was found in the category of the cost of 1-51 EUR 
(89.19%). The chi-square test has shown that, at the significance level of 5%, the hypothesis of equal shares of 

suspected working-hours claims, or non-suspected working-hours claims, at all the four observed cost levels cannot be 

rejected (chi-square=6.278, df=3, p-value=0.099). 

 

Table 5. The hourly-rate – variable UnitPriceCoded 

The hourly rate Suspect Not suspect Chi-square P-value 

1-50 EUR per hour 10.81% 89.19% 6.278 0.099 

51-100 EUR per hour 25.59% 74.41%   

101-150 EUR per hour 18.75% 81.25%   

151-200 EUR per hour 30.00% 70.00%   

Totals 24.62% 75.38%   

Source: Authors’ work, based on the internal data source. 

 

The variable Expert Level (Table 6) reflects the five expert levels coded from L4 to L8, which refer to the experience 

and relevant knowledge of consultants claiming working-hours (L4 is the lowest level of expertise, while L8 is the top 
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level of expertise). The highest share of suspected working-hours claims is present at the expert level L5 (77.78%) 

whereas the highest share of non-suspected working-hours claims is present at the expert level L4 (89.19%). The chi-

square test confirmed that, at the significance level of 1%, there is at least one expert level at which shares of suspected 

working-hours claims or non-suspected working-hours claims are statistically significantly different than at other expert 

levels (chi-square=33.147, df=4, p-value<0.001). 

 

Table 6. The consultant’s level of expertise – variable ExpertLevel 

Consultant Suspect Not suspect Chi-square P-value 

L6 24.69% 75.31% 33.147 <0.001 

L5 77.78% 22.22%   

L8 30.00% 70.00%   

L4 10.81% 89.19%   

L7 18.75% 81.25%   

Totals 24.62% 75.38%   

Source: Authors’ work, based on the internal data source. 

 

Table 7 outlines the number of weekly working hours of employees or consultants (the variable NoHoursCoded). There 
is a quite large number of discrete values of weekly working hours. Consequently, they are classified into eight groups: 

1-5; 6-10; 11-15; 16-20; 21-25; 25-30; 31-35; and 36-55. Due to some administrative problems, an additional category 

was introduced to incorporate negative weekly working-hours, which appeared due to some corrections conducted by 

consultants themselves. It is a company policy that, in the case of negative weekly working-hours, these working-hour 

claims are treated as suspected. The Chi-square test has shown that, at the significance level of 1%, there is at least one 

weekly working-hours category at which the share of suspected working-hours claims is statistically significantly 

different than at other weekly working-hours categories (chi-square=53.859, df=8, p-value<0.001). 

 

Table 7. The number of hours claimed – variable NoHoursCoded 

The number of hours  Suspect Not suspect Chi-square P-value 

Negative hours 100.00% 0.00% 53.859 <0.001 

1-5 hours 22.63% 77.37%   

6-10 hours 26.06% 73.94%   

11-15 hours 26.90% 73.10%   

16-20 hours 23.39% 76.61%   

21-25 hours 17.65% 82.35%   

25-30 hours 9.68% 90.32%   

31-35 hours 23.08% 76.92%   

36-55 hours 21.05% 78.95%   

Totals 24.62% 75.38%   

Source: Authors’ work, based on the internal data source. 
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The costs of consultants’ working-hours are observed by the variable TotalAmountCoded (Table 8), and those costs 

have been categorized into 19 cost categories. A negative amount is claimed for the working-hour claims with negative 

hours, which was elaborated for the variable NoHoursCoded (Table 7). The conducted chi-square test has shown that, at 

the significance level of 1%, there is at least one total cost per consultant category at which the share of suspected 

working-hours claims is statistically significantly different (chi-square=80.068, df=18, p-value<0.001). 

 

Table 8. The total amount claimed – variable TotalAmountCoded. 

The total amount claimed Suspect Not suspect Chi-square P-value 

1-100 EUR 25.30% 74.70% 80.068 <0.001 

101-200 EUR 16.94% 83.06%   

201-300 EUR 24.56% 75.44%   

301-400 EUR 24.17% 75.83%   

401-500 EUR 24.21% 75.79%   

501-600 EUR 24.51% 75.49%   

601-700 EUR 31.52% 68.48%   

701-800 EUR 16.67% 83.33%   

801-900 EUR 13.33% 86.67%   

901-1000 EUR 42.42% 57.58%   

1001-1100 EUR 35.19% 64.81%   

1101-1300 EUR 27.87% 72.13%   

1301-1500 EUR 29.33% 70.67%   

1501-1600 EUR 5.56% 94.44%   

1601-1700 EUR 15.38% 84.62%   

1701-2000 EUR 22.22% 77.78%   

2001-3000 EUR 18.97% 81.03%   

3001-4000 EUR 13.79% 86.21%   

Negative 100.00% 0.00%   

Totals 24.62% 75.38%   

Source: Authors’ work, based on the internal data source. 

3.2 CHAID decision tree 

In order to provide an understanding of the interrelation between working hours claim fraud and various characteristics, 

such as characteristics of customers, consultants, expert knowledge and others, a decision tree is developed using the 

CHAID algorithm. As the name reveals, the CHAID decision tree is based on the chi-square test, which is used to select 

the best split at each step. In order to construct a decision tree, the role of the dependent variable was given to the 

variable Suspect. All other observed variables have taken the role of independent variables (Customer; Consultant; 

Month; UnitPriceCoded; ExpertLevel; NoHoursCoded; TotalAmountCoded). In order to get a clear and easily 

understandable classification tree, it has been decided that the classification tree depth should go up to the third level, 

which is indicated by Bertsimas et al. (2017) [34], as the optimal depth of the tree. Furthermore, it has been defined that 

the main or parent node should have at least 100 cases whereas the following or child nodes should have at least 50 
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cases, which comprise approximately 8% and 4% respectively of the total sample (1,194 cases). The decision tree is 

developed using SPSS ver. 23. 

3.3 Link analysis  

Link analysis is a data analysis technique, which can be used for identification and evaluation of relationships between 

items that occur together, and which can be represented as “nodes.” Different objects like enterprises, employees, 

customers, transactions, and similar can be referred to as nodes. Link analysis is used for the detection of potentially 
suspect working-hours claims based on characteristics of clients, consultants, and projects. By using link analysis, the 

association rules are extracted in order to detect significant relationships between suspect working-hours claims and 

various characteristics of customers, consultants, and projects. Association rules can be described as: 

 

 If A=1 and B=1 then C=1 with probability p  (1) 

 

where A, B, and C are binary variables, p is a conditional probability defined as p = p(C = 1|A = 1, B = 1). Furthermore, 

the association rule can be simply written as A   B, where A is the body of the rule and B is the head of the 

association rule [35]. 

In the analysis, all eight variables are included: Suspect; Customer; Consultant; Month; UnitPriceCoded; ExpertLevel; 

NoHoursCoded; TotalAmountCoded. Because there is no defined and strict order between variables and items, it has 

been decided that the non-sequential association analysis approach will be applied [36]. Link analysis has been 

conducted using Statistica Data Miner software ver. 13.5.  

The minimum support value, which shows how frequently an itemset appears in the dataset, has been set to value 0.2 

whereas the maximum value was set to 1.0. Support is calculated as: 

 

 Support (A ⇒ B) = p(A ∪ B) (2) 

 

Items with support value lower than the minimum value will be excluded from the analysis. Similar, the minimum 

confidence value was set to 0.1 and the maximum value to 1.0. Confidence settings define how often the rule came out 

to be true. Again, items with confidence value lower than the minimum value will be excluded from the analysis. 

Confidence is calculated using the following equation: 

 

 Confidence (A ⇒ B) = p(B│A) = Support (A, B) / Support (A)  (3) 

 

Additional, it has been defined that the maximum number of items in an item set is 10.  

It has to be emphasized that there are no strict rules in the literature that minimum support value; minimum confidence 

value or the maximum number of items in an item set should be selected [37]. Other authors in their work use 

subjective criteria for selecting association rules [38], [39]. Therefore, the limits are here used as described before 

because the experiments with the different level of metrics indicated that they result in interesting rules. 
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4. Results 

4.1 Decision tree 

According to defined settings, the CHAID decision tree is developed (Figure 1). The resulting CHAID decision tree has 

3 levels and overall 11 nodes out of which seven are considered as a terminal (they do not split further). Figure 1 also 

reveals that variables Month, Customer and ExpertLevel had the highest level of statistical significance and therefore 

they are used in building the classification tree.  

The variable used for branching on the first level is the variable Month, which turned out to be statistically significant at 

the level of 1% (chi-square=130.995, p-value<0.001). This branching resulted in three new nodes (Node 1, Node 2, and 

Node 3). Node 1 includes categories M3, M4, M5, M6, M7, M10, and M11. That way Node 1 consists of 700 working-

hours claims out of which 587 or 83.9% are treated as non-suspected whereas 113 or 16.1% are suspected. Node 2 

includes the following categories of the variable Month: M2; M8; M9; and M12. Consequently, Node 2 has in total 383 

working-hours claims out of which 275 or 71.8% are non-suspected whereas 108 or 28.2% are suspected. Node 3 

includes only the category M1 and only at this node, the share of suspected working-hours claims (65.8%) is greater 

than the share of non-suspected working-hours claims (34.2%). 

The variable Customer was used for branching on the second level. According to Figure 1, branching resulted in five 

new nodes with three of them (Node 4, Node 5, and Node 6) coming out from Node 1 and two of them (Node 7 and 

Node 8) from Node 2. Both branching processes are highly statistically significant at 1% (from Node 1 – chi-
square=16.976, p-value<0.001; from Node 2 – chi-square=32.079, p-value<0.001). Node 4 includes only 67 customers 

of government institutions out of which 65 or 97.0% are connected with non-suspected working-hours claims, and two 

or 3.0% are connected with suspected working-hours claims. Node 5 consists of 69 customers of internal projects out of 

which 49 or 71.0% are connected with non-suspected working-hours claims and 20 or 29.0% are connected with 

suspected working-hours claims. Node 6 includes only customers of private enterprises, and it is the largest one among 

nodes of the second level. There are 473 or 83.9% customers of private enterprises that are connected with non-

suspected working-hours claims and 91 or 16.1% that are connected with suspected working-hours claims. On the other 

hand, Node 7, which is related to Node 2, includes customers of government institutions and customers of private 

enterprises together. It has been shown that out of 328 customers 253 or 77.1% are non-suspected whereas 75 or 22.9% 

are suspected for working-hours claim fraud. Node 8 includes only customers of internal projects. When nodes of the 

second level are observed, it can be concluded that only at this node the share of suspected working-hours claims (60.0) 

is higher than the share of non-suspected working-hours claims (40.0%).  

The third level branching variable is the variable ExpertLevel. This variable was used to branch Node 6 further into two 

new nodes (Node 9 and Node 10). This branching process is statistically significant at the 5% level (chi-square=9.539, 

p-value=0.030). Node 6 consists only of consultants with the expert level L6 whereas consultants with levels L4, L5, 

L7, and L8 can be found in Node 10. Node 9 is considerably larger than Node 10 and includes 431 or 85.5% non-

suspected working-hours claims and 73 or 14.5% suspected working-hours claims. Furthermore, it has to be 

emphasized that Node 9 includes 42.2% of all observed working-hours claims whereas Node 10 includes only 5.0% of 

them. Therefore, Node 10 includes 60 working-hours claims out of which 42 or 70% are non-suspected whereas 18 or 

30.0% are suspected. 

The classification matrix, shown in Table 9, compares the observed and the predicted status of working-hours claims. 

The used algorithm was correct in 93.3% of cases for the non-suspect working-hour claims. In other words, out of 900 

non-suspected working-hours claims, the algorithm has correctly classified 840 of them, whereas 60 working-hours 
claims were wrongly classified. The successfulness of the algorithm seems to be quite low in relation to suspected 

working-hours claims. Namely, out of 294 suspected working-hours claims, the algorithm correctly classified 106 

working-hours claims or 36.1%.  
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Source: Authors’ work, based on the internal data source. 

Figure 1. CHAID decision tree 

Table 9. The number of hours claimed – variable NoHoursCoded 

Observed 

classification 
 

Predicted 

classification 
 

 Non-suspect Suspect Percent correct 

Non-suspect 840 60 93.3% 

Suspect 188 106 36.1% 

Overall percentage 86.1% 13.9% 79.2% 

Source: Authors’ work, based on the internal data source. 
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4.2 Link analysis 

Using the selected metrics (minimum support value of 0.2; minimum confidence value of 0.1 and the maximum number 

of items in an item set of 0), the association rules have been developed. Table 10 presents the most frequent itemsets 

that contain Suspect item, indicating that the suspectable amount of working hours has been claimed. The item Suspect 

alone, with the frequency of 235, appears in the 27.71% of itemsets. Item Suspect in combinations with other items, 

such as Private, Domestic 51-100 and L6 can also be found in a significant number of projects. Consequently, it can be 
concluded that suspected working-hour claims are very closely related and linked with customers from private 

enterprises, with domestic consultants, with cost per hour between 51 and 100 EUR, and with expert level L6. Those 

relations are presented graphically in Figures 2 and 3 as well. 

 

Table 10. Frequent itemsets that contain Suspect item 

Frequent itemsets 
Number of 

items 
Frequency 

Support 

(%) 

Suspect 1 235 27.712 

51-100, Suspect 2 225 26.533 

51-100, L6, Suspect 3 221 26.061 

L6, Suspect 2 221 26.061 

Domestic, Suspect 2 220 25.943 

51-100, Domestic, Suspect 3 210 24.764 

51-100, Domestic, L6, Suspect 4 206 24.292 

Domestic, L6, Suspect 3 206 24.292 

Private, Suspect 2 193 22.759 

Domestic, Private, Suspect 3 185 21.816 

51-100, Private, Suspect 3 183 21.580 

L6, Private, Suspect 3 180 21.226 

51-100, L6, Private, Suspect 4 180 21.226 

51-100, Domestic, Private, Suspect 4 175 20.636 

51-100, Domestic, L6, Private, 

Suspect 
5 172 20.283 

Domestic, L6, Private, Suspect 4 172 20.283 

Source: Authors’ work, based on the internal data source. 

 

Figure 2 presents a Web graph of items generated by link analysis. Node size indicates the relative support for each 

item, line thickness relative joint support of two items, and color darkness of line a relative lift of two items. It can be 

observed that the most important nodes are related to the domestic experts, non-suspected claims, the lowest level of 
expertise (L6), private customers, and one of the low level of hourly paid rate (51-100 EUR). The strongest joint 

support is for the claims that are non-suspected and the domestic experts, the lowest level of expertise (L6), private 

customers, and one of the low level of hourly paid rate (51-100 EUR). As expected the darkest line presents the strength 

of the relationship between the lowest level of expertise (L6) and one of the low levels of hourly paid rate (51-100 

EUR). 
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Figure 3 presents a rule graph of items generated by link analysis. Node size presents relative support of each item, and 

color darkness relative confidence. Again, the rule with the highest confidence and support is the relationship between 

the lowest level of expertise (L6) and one of the low level of hourly paid rate (51-100 EUR). It can be noted that the 

rules that contain the item Suspect are presented with small node sizes, and include the relationships between the item 

Suspect and the low level of hourly paid rate (51-100 EUR), domestic experts, the lowest level of expertise (L6), and 

private companies as customers.  

 
Source: Authors’ work, based on the internal data source. 

Figure 2. Web graph of items generated by link analysis 

 

 
Source: Authors’ work, based on the internal data source. 

Figure 3. Rule graph of items generated by link analysis 
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Table 11 presents association rules with the item Suspect in the body. The first rule shows that 26.53% of working-

hours claims are suspected and with cost per hour between 51 and 100 EUR. Furthermore, it seems that 95.75% 

suspected working-hours claims are with cost per hour between 51 and 100 EUR. The second and third rules resulted in 

the same support and confidence levels. 

Table 11. Frequent association rules with the item Suspect in the body 

Body ==> Head Support (%) Confidence (%) Lift 

Suspect ==> 51-100 26.533 95.745 1.052 

Suspect ==> 51-100, L6 26.061 94.043 1.042 

Suspect ==> L6 26.061 94.043 1.042 

Suspect ==> Domestic 25.943 93.617 0.985 

Suspect ==> 51-100, Domestic 24.764 89.362 1.031 

Suspect ==> 51-100, Domestic, L6 24.292 87.660 1.021 

Suspect ==> Domestic, L6 24.292 87.660 1.021 

Suspect ==> Private 22.759 82.128 0.992 

Suspect ==> Domestic, Private 21.816 78.723 0.995 

Suspect ==> 51-100, Private 21.580 77.872 1.025 

Suspect ==> 51-100, L6, Private 21.226 76.596 1.016 

Suspect ==> L6, Private 21.226 76.596 1.016 

Suspect ==> 51-100, Domestic, Private 20.637 74.468 1.027 

Suspect ==> 51-100, Domestic, L6, Private 20.283 73.191 1.017 

Suspect ==> Domestic, L6, Private 20.283 73.191 1.017 

Source: Authors’ work, based on the internal data source. 

 

Table 12 presents association rules with the item Suspect and one more item in the Body. If items Suspect and Private 

are in the Body, the strongest association is achieved with item Domestic. In that case, 21.82% of working-hours claims 

are suspected working-hours claims, with customers from private enterprises and with domestic consultants. It appears 

that 95.86% of suspected working-hours claims with customers from private enterprises include domestic consultants. If 

items Suspect and L6 are put together in the Body, the strongest association is achieved with item 51-100. It has been 

shown that all suspected working-hours claims with expert level L6 are related to cost per hour between 51 and 100 

EUR. If items Suspect and Domestic are together in the Body, again the strongest association is achieved with item 51-

100. However, 95.46% of suspected working-hours claims with domestic consultants have a cost per hour between 51 

and 100 EUR. 

Association rules with the item Suspect and two or more items in the Body are presented in Table 13. Suspected 

working-hours claims with customers from private enterprises and with expert level L6 have a cost per hour between 51 

and 100 EUR. The same conclusion can be brought when items Domestic, L6 and Suspect are associated with item 51-
100; and when items Domestic, L6, Private and Suspect are associated with item 51-100. 
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Table 12. Association rules with the item Suspect and one more item in the Body 

Body ==> Head Support (%) Confidence (%) Lift 

Private, Suspect ==> Domestic 21.816 95.855 1.008 

Private, Suspect ==> 51-100 21.580 94.819 1.042 

Private, Suspect ==> 51-100, L6 21.226 93.264 1.034 

Private, Suspect ==> L6 21.226 93.264 1.034 

Private, Suspect ==> 51-100, Domestic 20.637 90.674 1.046 

Private, Suspect ==> 51-100, Domestic, L6 20.283 89.119 1.038 

Private, Suspect ==> Domestic, L6 20.283 89.119 1.038 

L6, Suspect ==> 51-100 26.061 100.000 1.098 

L6, Suspect ==> 51-100, Domestic 24.292 93.213 1.075 

L6, Suspect ==> Domestic 24.292 93.213 0.981 

L6, Suspect ==> 51-100, Private 21.226 81.448 1.072 

L6, Suspect ==> Private 21.226 81.448 0.984 

L6, Suspect ==> 51-100, Domestic, Private 20.283 77.828 1.073 

L6, Suspect ==> Domestic, Private 20.283 77.828 0.984 

Domestic, Suspect ==> 51-100 24.764 95.455 1.049 

Domestic, Suspect ==> 51-100, L6 24.292 93.636 1.038 

Domestic, Suspect ==> L6 24.292 93.636 1.038 

Domestic, Suspect ==> Private 21.816 84.091 1.016 

Domestic, Suspect ==> 51-100, Private 20.637 79.545 1.047 

Domestic, Suspect ==> 51-100, L6, Private 20.283 78.182 1.038 

Domestic, Suspect ==> L6, Private 20.283 78.182 1.038 

51-100, Suspect ==> L6 26.061 98.222 1.089 

51-100, Suspect ==> Domestic 24.764 93.333 0.982 

51-100, Suspect ==> Domestic, L6 24.292 91.556 1.066 

51-100, Suspect ==> Private 21.580 81.333 0.982 

51-100, Suspect ==> L6, Private 21.226 80.000 1.062 

51-100, Suspect ==> Domestic, Private 20.637 77.778 0.983 

51-100, Suspect ==> Domestic, L6, Private 20.283 76.444 1.063 

Source: Authors’ work, based on the internal data source. 
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Table 13. Association rules with the item Suspect and two or more items in the Body 

Body ==> Head Support (%) Confidence (%) Lift 

L6, Private, Suspect ==> 51-100 21.226 100.000 1.098 

L6, Private, Suspect ==> 51-100, Domestic 20.283 95.556 1.102 

L6, Private, Suspect ==> Domestic 20.283 95.556 1.005 

Domestic, Private, Suspect ==> 51-100 20.637 94.595 1.039 

Domestic, Private, Suspect ==> 51-100, L6 20.283 92.973 1.031 

Domestic, Private, Suspect ==> L6 20.283 92.973 1.031 

Domestic, L6, Suspect ==> 51-100 24.292 100.000 1.098 

Domestic, L6, Suspect ==> 51-100, Private 20.283 83.495 1.099 

Domestic, L6, Suspect ==> Private 20.283 83.495 1.009 

Domestic, L6, Private, Suspect ==> 51-100 20.283 100.000 1.098 

51-100, Private, Suspect ==> L6 21.226 98.361 1.090 

51-100, Private, Suspect ==> Domestic 20.637 95.628 1.006 

51-100, Private, Suspect ==> Domestic, L6 20.283 93.989 1.095 

51-100, L6, Suspect ==> Domestic 24.292 93.213 0.981 

51-100, L6, Suspect ==> Private 21.226 81.448 0.984 

51-100, L6, Suspect ==> Domestic, Private 20.283 77.828 0.984 

51-100, L6, Private, Suspect ==> Domestic 20.283 95.556 1.005 

51-100, Domestic, Suspect ==> L6 24.292 98.095 1.087 

51-100, Domestic, Suspect ==> Private 20.637 83.333 1.007 

51-100, Domestic, Suspect ==> L6, Private 20.283 81.905 1.087 

51-100, Domestic, Private, Suspect ==> L6 20.283 98.286 1.089 

51-100, Domestic, L6, Suspect ==> Private 20.283 83.495 1.009 

Source: Authors’ work, based on the internal data source. 

5. Conclusions 

A case study analysis was conducted using data related to suspected working-hour claims in one project-based 

company. We aim to identify the relationship of the suspect working-hour claims with selected variables, related to 

characteristics of customers, consultants, and work conducted (e.g., private and government customers; domestic or 
foreign consultants; the month of the work conducted and hourly rate). We develop two data mining models that 

identified the following characteristics of fraudulent working-hour claims: customers are private enterprises, consultants 

are of domestic origin and with the lowest level of expertise, and the cost of the consulting services are within the 

lowest range. First, the CHAID decision tree was developed in order to determine the relationships between numerous 

characteristics of the project (e.g., characteristics of the client and the expert), and suspect working-hour claims. The 

results of the decision tree showed a general rate of nearly 80% of correct classification. Second, the link analysis was 

used for the detection of potentially suspect working-hours claims. Both decision tree and link analysis indicate that 

suspected working-hours claims are related to customers from private enterprises, domestic consultants, cost per hour 

between 51 and 100 EUR, and the lowest level of expertise. 
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This paper contributes to the growing body of work that investigates internal fraud prevention and detection. However, 

most of the work conducted in this area is focused on the analysis of financial reports and accounting fraud [5], [6], [7], 

while in our work, we focus to project-based organizations. This research has demonstrated the use of a data mining 

methodology to detect internal fraud. Our proposition was that it is possible to develop a data mining application that 

could be useful for project-based organizations in predicting and detecting fraudulent working-hour claims. Although 

the decision tree algorithm is more efficient in predicting non-suspect working-hour claims than in suspect ones, and the 
confidence and support levels for suspect claims were rather low, the management from the company confirmed that the 

information derived is valid to them since it provided new insight into the characteristics of suspect working-hour 

claims. This information allows them to focus their efforts on the following categories identified by the decision tree as 

the most likely to be suspected: working-hour claims submitted in M1 by the internal experts. In addition, the general 

rate of correct classification of 79.2% can be observed as quite good [40]. Based on the presented results, it can be 

concluded that the decision tree and link analysis are recommended for use as a supportive instrument for the detection 

of suspect working-hour claims, in combination with other human-based and machine-based methods.  

Our research has significant practical implications. Considering that auditors need non-accounting and non-financial 

data with no external standards to apply, it is likely that auditors will need to develop their own set of procedures to 

determine the quality of non-financial data [41]. Therefore, it is important that organizations expand usage and 

potentials of different data mining techniques, which could help them to be more effective and efficient in investigating 
and preventing internal fraud [17]. Project-based organizations often learn implicitly from experience [42], aiming to 

capture and share project-based knowledge, thus indicating that data mining could be widely accepted in their learning-

oriented cultures [43]. One of the possible operationalizations of our work in this direction is the usage of SQL code 

that is generated by the software used for the development of the CHAID decision tree (Appendix 1), which can be used 

for the development of the solution for automatic internal fraud-detection. 

Limitations of the paper derive mainly from sample characteristics since we presented one case study for one specific 

company and the usage of two data mining methods. Therefore, in order to test if our results are generally applicable, 

future research should be focused on datasets from organizations from different settings, using a broader set of data 

mining techniques, which would improve the knowledge regarding discovering patterns in internal fraud in project-

based organizations using data mining techniques.  
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Appendix A. Selected SQL equations generated for the implementation of the CHAID decision tree  

/* Node 4 */. DO IF (Month NE "M9"  AND  Month NE "M12"  AND  Month NE "M8"  AND  Month NE "M2"  AND  

Month NE "M1")  AND  (Customer EQ "Govern"). COMPUTE nod_001 = 4. COMPUTE pre_001 = 'Not Susp'. 

COMPUTE prb_001 = 0.970149. END IF. EXECUTE. 

/* Node 5 */. DO IF (Month NE "M9"  AND  Month NE "M12"  AND  Month NE "M8"  AND  Month NE "M2"  AND  

Month NE "M1")  AND  (Customer EQ "Internal"). COMPUTE nod_001 = 5. COMPUTE pre_001 = 'Not Susp'. 

COMPUTE prb_001 = 0.710145. END IF. EXECUTE. 

/* Node 9 */. DO IF (Month NE "M9"  AND  Month NE "M12"  AND  Month NE "M8"  AND  Month NE "M2"  AND  

Month NE "M1")  AND  (Customer NE "Govern"  AND  Customer NE "Internal")  AND  (ExpertLevel NE "L4"  AND  

ExpertLevel NE "L8"  AND  ExpertLevel NE "L7"  AND   ExpertLevel NE "L5"). COMPUTE nod_001 = 9. 

COMPUTE pre_001 = 'Not Susp'. COMPUTE prb_001 = 0.855159. END IF. EXECUTE. 

/* Node 10 */. DO IF (Month NE "M9"  AND  Month NE "M12"  AND  Month NE "M8"  AND  Month NE "M2"  

AND  Month NE "M1")  AND  (Customer NE "Govern"  AND  Customer NE "Internal")  AND  (ExpertLevel EQ "L4" 

OR ExpertLevel EQ "L8" OR ExpertLevel EQ "L7" OR ExpertLevel EQ  "L5"). COMPUTE nod_001 = 10. 

COMPUTE pre_001 = 'Not Susp'. COMPUTE prb_001 = 0.700000. END IF. EXECUTE. 

/* Node 7 */. DO IF (Month EQ "M9" OR Month EQ "M12" OR Month EQ "M8" OR Month EQ "M2")  AND  

(Customer NE "Internal"). COMPUTE nod_001 = 7. COMPUTE pre_001 = 'Not Susp'. COMPUTE prb_001 = 

0.771341. END IF. EXECUTE. 

/* Node 8 */. DO IF (Month EQ "M9" OR Month EQ "M12" OR Month EQ "M8" OR Month EQ "M2")  AND  

(Customer EQ "Internal"). COMPUTE nod_001 = 8. COMPUTE pre_001 = 'Suspect'. COMPUTE prb_001 = 0.600000. 

END IF. EXECUTE. 

/* Node 3 */. DO IF (Month EQ "M1"). COMPUTE nod_001 = 3. COMPUTE pre_001 = 'Suspect'. COMPUTE 

prb_001 = 0.657658. 

END IF. EXECUTE. 
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