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Abstract: 

Cloud computing presents an opportunity for organizations to leverage affordable, scalable, and agile technologies. 

However, even with the demonstrated value of cloud computing, organizations have been hesitant to adopt such 

technologies. Based on a multi-theoretical research model, this paper provides an empirical study targeted to better 

understand the adoption of cloud services. An online survey addressing the factors derived from literature for three 

specific popular cloud application types (cloud storage, cloud mail and cloud office) was undertaken. The research 

model was analyzed by using variance-based structural equation modelling. Results show that the factors of 

compatibility, relative advantage, security & trust, as well as, a lower level of complexity lead to a more positive 

attitude towards cloud adoption. Complexity, compatibility, image and security & trust have direct and indirect effects 

on relative advantage. These factors further explain a large part of the attitude towards cloud adoption but not of its 

usage. 
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1. Introduction 

Cloud computing is a beneficial way of delivering information technology (IT) services to individuals and organizations 

[1–5]. Even though cloud computing offers ways to improve their IT performance, the attitude towards cloud 

computing is influenced by significant concerns toward this innovation [6, 7]. 

Being an important area for IT innovation and business investment [4], the adoption of cloud computing has received 

increasing attention in both practice and research [8]. Although recent studies have provided information on the current 

state of the adoption of cloud computing, there is still a need to study both the attitude towards adoption and the actual 

usage of certain cloud application types across organizations of different sizes, industries and locations. Therefore, this 

paper develops an explorative multi-theoretical model to examine important factors affecting cloud adoption among 

organizations. 

The goal of this paper is to verify a multi-theoretical research model recombined by factors originating from Davis' 

Technology Acceptance Model (TAM) and Rogers' Diffusion of Innovation (DoI). While the factors are theoretically 

based, this paper examines their practical relevance within the context of cloud computing. The remainder of this paper 

is arranged as follows: Section 2 frames the background and motivates the necessity to derive factors relevant for the 

intended purpose. In Section 3, the research model is presented, included factors are described and the proposed 

hypotheses are deduced. Section 4 summarizes the operationalization of the influencing factors. Section 5 provides the 

empirical results using variance-based structural equation modelling (PLS-SEM). Finally, conclusions and future work 

are provided in Section 6. 

2. Literature review: background and factor exploration in the context of cloud computing 

As research on the diffusion of innovations dates back to the 1940s [9], various explorations of the drivers for 

innovation adoption are found in the literature. Of primary interest for this research are empirical studies based on 

widely accepted theories that are related to the topic of cloud computing. Furthermore, it is important to distinguish 

between the adoption of innovations by individuals and adoption within organizations, as the adoption processes may be 

quite different [10]. Several sources of recent topic-related literature show empirical evidence indicating that certain 

factors influence the adoption decision regarding cloud services [2, 4, 6–8, 11–17].  

To form a rigorous understanding of innovation, it is necessary to consider several factors of innovation simultaneously 

and to evaluate their relationships [10]. For example, Holland and Light identified several critical success factors from a 

larger list of potential factors found in relevant research [18]. The innovation factors that have the most consistently 

significant relationships with innovation adoption are compatibility, relative advantage and complexity [10]. These three 

factors originate from Rogers’ Diffusion of Innovation (DoI) theory, which suggested that diffusion is “the process by 

which an innovation is communicated through certain channels over time among the members of a social system” [9], 

whereas an innovation is “an idea, practice or object that is perceived as new by an individual or other unit of adoption” 

[9]. Compatibility, relative advantage and complexity are perceived attributes of innovations that help to explain the 

adoption of innovative technologies and therefore are considered to be relevant in the context of this research. In 

addition to the factors stated by Rogers’ DoI, Moore and Benbasat considered image an important factor within their 

development of an instrument to measure the perceptions of adopting an information technology innovation. Some 

authors include image within the factor of relative advantage (e.g. 9). This has been criticised, as the effect of image is 

rather different from the effect of relative advantage. Therefore, image should be specified as independent factor [10, 

19, 20]. 

To examine the adoption of complex, new and interactive technology, it is beneficial to take factors from more than one 

theoretical model into account in order to appropriately express the multi-faceted nature of such an adoption 

phenomenon [4]. For this purpose, Davis’ Technology Acceptance Model (TAM) is also included in this study [21]. 

Davis suggested TAM to explore reasons for users to accept or reject information technology and to explain the impact 
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of design features of a system on user acceptance. Specifically, causal relations between external stimulus, cognitive 

response, affective response and behavioural response are investigated. The factors perceived usefulness and perceived 

ease-of-use determine the cognitive responses to system design features. However, even with the similarity of perceived 

usefulness to relative advantage of perceived ease-of-use to complexity [19], these factors have been included as they 

are of particular interest in the context of cloud computing research. Davis’ TAM primarily aims at influences on the 

behaviour of individuals whereas this research focuses on the organizational perspective. However, Benamati and 

Rajkumar stated that many IT decisions, such as that of outsourcing, are made by single individuals at the executive 

levels of an organization [22]. Thus the application of TAM, which is designed to elicit responses of an individual, is 

appropriate to evaluate acceptance of certain organization-wide technology decisions. However, TAM and its modified 

versions are criticized for failing to address certain issues such as security & trust [2].  

Furthermore, an examination of the adoption of innovations should focus on both the attitude towards adoption and 

actual usage as the dependent variables [10]. Davis’ TAM also suggests distinguishing between those two variables. In 

a recent study on Software-as-a-Service (SaaS) adoption, based on the theory of planned behaviour [23], Benlian, Hess, 

and Buxmann found that the attitude toward the behaviour to adopt influences the actual SaaS adoption as well [11]. 

Based on these considerations, existing literature on influencing factors of technological innovations were compared 

and categorized into the factors compatibility (CPT), relative advantage (REL), complexity (CPX), image (IMG) and 

security & trust (SEC) which are widely accepted and verified in IS research. Stieninger et al. provide a comprehensive 

examination of these factors [24]. This overview includes mainly empirical surveys that analyse different factors based 

on well-established models and frameworks, as well as conceptual papers that aggregate these factors. All of the 

empirical surveys [2, 4, 7, 12–17, 25–29] focus on only some of the aforementioned factors. Therefore, there is a lack of 

studies that consider these factors simultaneously and evaluate their relationships. 

3. Research Model 

In this section, we describe the research model developed to explore the adoption of cloud computing. The model 

consists of the factors derived from literature and hypotheses concerning relationships between these factors and 

towards the constructs of attitude towards cloud adoption and actual cloud usage. Figure 1 (in next page) provides an 

overview of the research model. The following subsections define and briefly discuss the factors and hypotheses 

derived. 

3.1 Attitude towards cloud adoption and actual cloud usage 

Research studies on innovation characteristics should focus on both planned adoption and actual implementation as 

dependent variables [10]. As mentioned earlier, Davis’ TAM suggests distinguishing between these two variables. 

Additionally, in a recent study on SaaS adoption, based on the theory of planned behaviour [23], Benlian, Hess, and 

Buxmann found that the attitude toward the adoption influences the actual SaaS adoption as well [11]. Therefore, we 

hypothesize: 

H1. (+) The attitude towards cloud adoption (ATT) positively affects the actual usage of cloud computing (USG). 

3.2 Compatibility 

The factor of compatibility is derived from Rogers’ DoI theory. “Compatibility is the degree to which an innovation is 

perceived as consistent with the existing values, past experiences and needs of potential adopters” [9]. Tornatzky et al. 

define compatibility in a more operational way as “congruence with the existing practices of the adopters” [10]. In 

addition, there is a need to distinguish between technical compatibility and organizational compatibility [30]. 

Consequently, the proposed hypotheses are based on the assumption that increased compatibility influences the 

adoption intention and the actual adoption of cloud computing in a positive way [4, 10, 16, 20]. 
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Fig. 1. Research Model 

 

Additionally, we assume that when cloud computing is compatible with existing data structures and processes, it will be 

perceived to have a relative advantage [25]. 

H2a. (+) A higher level of compatibility (CPT) will positively affect the attitude towards cloud adoption (ATT). 

H2b. (+) A higher level of compatibility (CPT) will positively affect the actual usage of cloud computing (USG).  

H2c. (+) A higher level of compatibility (CPT) will positively affect the perceived relative advantage (REL). 

3.3 Relative advantage 

The factor of relative advantage also originates from Rogers’ DoI theory. Relative advantage is defined as “the degree 

to which an innovation is perceived as being better than the idea it supersedes” [9]. In the context of IS, the application 

of this theory revealed that relative advantage is one of the most important factors for adoption decisions [31]. Cloud 

computing solutions provide several relative advantages, including load relieving of the network infrastructure, 
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reduction of hardware maintenance and infrastructure operation, flexibility, simple administration, collaboration 

opportunities, potential cost savings and increased automation [6]. Consequently, the corresponding hypotheses are:  

H3a. (+) A higher level of perceived relative advantage (REL) will positively affect the attitude towards cloud adoption 

(ATT).  

H3b. (+) A higher level of perceived relative advantage (REL) will positively affect the actual usage of cloud 

computing (USG).  

3.4 Complexity 

Complexity has been extensively studied in the IS literature [25]. Rogers defines complexity as “the degree to which an 

innovation is perceived as relatively difficult to understand and use” [9]. The longer it takes to understand and to 

implement an innovation, the more likely it is that complexity turns into a barrier for adoption of a new technology. This 

is why complexity usually negatively affects adoption of technologies [4, 16, 30]. However, a study among small and 

medium enterprises (SMEs) revealed that experts do not consider cloud computing as a very complex technology to 

implement due to simple administration tools, high usability, as well as a high degree of automation [6]. In TAM, Davis 

describes complexity from a positive point of view and uses the term ease-of-use. He defines it as “the degree to which 

an individual believes that using a particular system would be free of physical and mental effort” [21]. Even though 

there are general differences between Rogers’ DoI theory and Davis’ TAM (i.e., Rogers focuses on the organizational 

and Davis on the individual perspective, concerning complexity and ease-of-use), they are both discussing the 

perception of individuals. Several studies suggest that individuals will see greater relative advantage in innovations that 

are perceived as easy to use (e.g., [7, 25, 27]). Hence, increased complexity probably inhibits the adoption of 

technological innovations. For that purpose, the factors are negatively correlated in the proposed hypotheses [4, 16].  

H4a. (-) A higher level of complexity (CPX) will negatively affect the attitude towards cloud adoption (ATT). 

H4b. (-) A higher level of complexity (CPX) will negatively affect the actual usage of cloud computing (USG). 

H4c. (-) A higher level of complexity (CPX) will negatively affect the perceived relative advantage of cloud computing 

(REL).  

3.5 Image 

Moore and Benbasat define image as “the degree to which use of an innovation is perceived to enhance one's image or 

status in one's social system” [19]. Existing research suggests that image can be seen as the reputation of the service 

provider [26], the reputation of the company adopting the solution [32], and the innovativeness of the solution itself 

[26]. In the context of cloud computing, the factor image is of high importance, because attitudes towards the adopted 

technology might also be transferred to the company and thereby influence its image [6]. Previous studies also found 

that the influence of image is partially mediated by relative advantage [25]. Therefore, we hypothesize: 

H5a. (+) A better image (IMG) will positively affect the attitude towards cloud adoption (ATT).  

H5b. (+) A better image (IMG) will positively affect the actual usage of cloud computing (USG).  

H5c. (+) A better image (IMG) will positively affect the perceived relative advantage of cloud computing (REL).  

3.6 Security & trust 

As a literature overview by Gefen et al. found, there is a multitude of differing approaches for the conceptualization of 

trust [33]. For the scope of this paper, the factor is considered as the ability of the involved actors to convey the 

perception of trustfulness [6]. Trust is characterized as a critical quality of service (QoS) parameter to be considered for 

service requests within the context of cloud computing [34]. This factor is especially crucial regarding scenarios 

involving public cloud [35]. Following Wu, perceived security and safety were applied as an element of trust and thus 
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security and trust were combined to a single factor [2]. Issues in security & trust are also likely to affect the image of 

cloud computing [32]. Accordingly, the following hypotheses are proposed:  

H6a. (+) A higher level of security and trust (SEC) will positively affect the attitude towards cloud adoption (ATT). 

H6b. (+) A higher level of security and trust (SEC) will positively affect the actual usage of cloud computing (USG). 

H6c. (+) A higher level of security and trust (SEC) will positively affect the perceived image of cloud computing 

(IMG). 

4. Operationalization of the research model 

In this section, we describe how the factors of the previous section were operationalized and measured. Based on 

existing literature for each of them, a number of relevant measurement items were identified. Additionally, every item 

was described by a statement that has been used in the survey (see section 5.1). Table 1 shows these factors, items, 

statements and the literature reference it was derived from. Three popular cloud computing applications in the business 

context [36], namely (i) cloud storage, (ii) cloud e-mail and (iii) cloud office were chosen to clarify the term cloud 

computing itself. Example statements in Table 1 refer to cloud storage only. Additionally, participants were also asked 

to respond to questions concerning cloud-based e-mail and cloud office applications. For example, item CPT1 was 

surveyed using the following three statements: “Data can easily be exchanged between the existing IT 

services/applications and the cloud storage”, “Data can easily be exchanged between the existing IT 

services/applications and cloud office applications”, and “Existing e-mail data can easily be transferred to the cloud 

service provider”. 

 

Table 1. Operationalization of factors. 

Factor / Construct Item Statement Adapted 

from 

Compatibility (CPT1) Data exchangeability Data can easily be exchanged between the existing IT services/applications 

and the cloud storage. 

[16] 

Compatibility (CPT2) Process integrability Cloud storage solutions can easily be integrated into the existing process 

landscape.  

[16] 

Compatibility (CPT3) Vendor 

interoperability 

Data from the cloud storage can easily be transferred between different cloud 

service providers.  

[16] 

Relative advantage (REL1) Usefulness The application of cloud storage services is useful for the accomplishment of 

tasks.  

[28] 

Relative advantage (REL2) Quality The application of cloud storage services increases the quality of the results.  [28] 

Relative advantage (REL3) Convenience The application of cloud storage services improves the convenience of task 

fulfilment.  

[28] 

Relative advantage (REL5) Speed The adoption of cloud storage solutions led to increased speed of business 

communications.  

[4] 

Relative advantage (REL6) Performance The use of cloud storage solutions increased my job performance.  [29] 

Complexity (CPX1) Flexibility Cloud storage solutions are more flexible than conventional solutions.  [28] 

Image (IMG1) Reputation of the 

cloud service provider 

The willingness to transact with a certain cloud storage provider is influenced 

by its overall reputation.  

[26] 

Image (IMG2) Reputation of the 

company 

The adoption of cloud storage solutions influences the company's reputation.  [32] 
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Factor / Construct Item Statement Adapted 

from 

Image (IMG3) Innovativeness Cloud storage solutions are considered innovative.  [26] 

Security & trust (SEC1) Data security The improvement of data security played a role in the decision process 

towards the adoption of cloud storage. 

[6] 

Security & trust (SEC2) Trustfulness of the 

cloud service provider 

The trustfulness of the cloud storage provider is a crucial factor within the 

adoption decision process. 

[2] 

Security & trust (SEC3) Contractual 

agreements 

Detailed contractual agreements with the cloud storage provider (e.g. SLAs) 

contribute to an improved perception of data security and safety. 

[6] 

Attitude (ATT1) Attitude Overall, using cloud storage on business is … 

(...) negative-positive 

[11] 

Attitude (ATT2) Attitude Overall, using cloud storage on business is … 

 (...) harmful-beneficial 

[11] 

Attitude (ATT3) Attitude Overall, using cloud storage on business is … 

 (...) unimportant-important 

[11] 

Usage (USG1) Actual Usage How often do you use cloud storage services on business?  

 

5. Empirical Results 

This section discusses the instrument for data collection and provides a profile of the sample. Furthermore, the results of 

the data analysis, which was done by structural equation modelling (SEM), are presented.  

5.1 Data collection and sample description 

The measurement instrument was delivered online and subjects were recruited using Amazon’s Mechanical Turk 

(www.mturk.com), an online labour market, in the light of cloud computing also referred to as Humans-as-a-Service 

(HaaS) [37]. While subjects are paid for their responses, sample errors (e.g., coverage error) and risks (e.g., dishonest 

responses) are low or moderate compared to traditional recruiting methods for laboratory, traditional web study and web 

studies through purpose built websites [38]. It was also reported that subjects appear to be truthful when providing self-

report information because of their intrinsic motivations and the incentive structure of Mechanical Turk. Submissions 

can be rejected by the requesters and subjects can be screened, for example on the basis of past approval rates, or the 

number of tasks completed [39]. Furthermore, the efficacy of using Mechanical Turk for behavioural research has been 

explored in the domains of political science [40], linguistics [41], psychology [42], economics [43] and information 

systems [44–47]. As task seekers in online labour market may utilize cloud computing services to complete technical 

tasks, and as such markets include participants with a wide variety of demographic statistics, the sample used in this 

study exhibits traits of strong generalizability.  

The survey was available for participation from April 11th to May 18th, 2014. As the survey was executed in English 

language, the participants were asked to indicate their level of English proficiency in order to avoid misunderstandings 

due to language deficiencies. Furthermore, a requirement for participation in the survey was a positive employment 

status to ensure that the participants were in the position to judge a statement from the organizational perspective.  

At the beginning of the survey, the participants were asked to provide some demographic data such as age, sex, and 

nationality. Then they were asked to indicate their familiarity with certain types of cloud computing applications (e.g., 

cloud storage, cloud e-mail and cloud office). Depending on the answers to these questions, the participants were 

subsequently asked to rate a set of statements on the particular cloud computing application types with which they had 

indicated to be familiar with. For that purpose, a 5-point Likert scale has been applied ranging from “I strongly agree” 
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to “I strongly disagree” (e.g., [2, 12]). The attitude towards the particular type of cloud computing application was 

queried through the semantic differential approach and the use of three bipolar dimensions (negative-positive, harmful-

beneficial, and unimportant-important), likewise on a 5-point Likert scale [11, 48] (cf. Table 1).  

We included several mechanisms to assess the seriousness of the responses:  

 The survey was only available to workers who demonstrated consistent accuracy. Specifically, the survey was 

only available to subjects with an approval rate of at least 97% and who previously completed at least 500 

approved tasks.  

 The participants were not told about the initial requirements to be included in the sample. Instead, a short 

survey with the possibility to take part in an extended survey was launched. The resulting sample only includes 

participants with a professional English proficiency level and an employment status either “employed” or 

“self-employed” (i.e., participants with limited English skills, as well as unemployed people, students, or 

pensioners were excluded).  

 To prevent repeated submissions by an individual participant, the unique identifiers assigned to each user by 

Amazon’s Mechanical Turk (“Worker ID”) was verified to be unique prior to the data analysis.  
 The participants were asked to reflect on the accurateness of their responses in a final question (“What 

describes best what you have just done?”), remarking that their answer would not have any influence on the 

reward. Only respondents answering with “I focused on each question and answered them to the best 

knowledge and belief” were included in the sample.  

 Only completed surveys were included. As additional indicator of the accuracy of the task, a 10-digit code 

titled “response id” was displayed within the text at the last page. Respondents were required to provide this 

code to the Mechanical Turk system. Only responses with a valid code were included in the sample. 

 The overall time needed to fill out the survey was also monitored, as response time may serve as additional 

indicator of the seriousness of the answers [47]. Instead of removing the fastest responses, a minimum of two 

minutes for answering the questions on each cloud application type was used as reference time for inclusion in 

the sample.  

 

Overall, the final sample includes responses from 203 individuals, with more men (63%) than women (37%) 

participating. 60% of the participants were younger than 35 years. The geographical distribution shows that the majority 

of them were located in North America (41.87%), Asia (33.50%) and Europe (18.72%). Participation in other continents 

(Africa, Australia, South America) was lower (combined 5.91%). Since each participant filled out one set of questions 

for each cloud application type (e.g., cloud storage, cloud e-mail, cloud office) he/she had indicated to be familiar with, 

the dataset includes 518 complete responses (182 for cloud e-mail, 174 for cloud storage and 162 for cloud office). 

Regardless of how many application types they filled out due to the familiarity, each participant received 2 USD for the 

completion of the full survey via their Amazon Mechanical Turk account. Consequently, the sample can be considered 

heterogeneous. While participation in online labour markets, such as Amazon Mechanical Turk are popular in Asia, this 

study was able to generate a sample with a good mix in respect to sex, age and location.  

5.2 Evaluation of the research model 

Due to the complexity of the relationships between the factors, structural equation modelling (SEM) was used to 

evaluate the research model [49–51]. This statistical multivariate technique combines factor analysis and regressions. It 

enables the examination of relationships among measured variables and latent variables. Latent variables are abstract, 

complex and not directly measurable. In the context of this study, the factors of the theoretical research model are latent 

variables (see Figure 1). 

There are two forms of structural equation modelling (SEM): variance-based structural equation modelling (PLS-SEM) 

and covariance-based structural equation modelling (CB-SEM). For this study, we applied PLS-SEM (Partial Least 

Squares Structural Equation Modelling) as (i) it has no requirements as to the normality of the latent values in the 
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population, (ii) it is used in exploratory research for predictive applications, and (iii) it is designed to explain variance in 

dependent variables [50, 51]. 

During the analysis, five indicators (CPX1, CPX3, REL4, SEC4 and USG2) were eliminated as they did not meet the 

required criteria. Thus, henceforth, the eliminated indicators are no longer mentioned within this paper. As all items are 

manifestations of the latent variables, the investigated model is considered reflective. 

To evaluate the model using PLS-SEM a two-step approach was conducted, consisting of (i) the evaluation of the 

measurement model followed by (ii) the evaluation of the structural model [50]. 

5.3 Measurement model evaluation 

Evaluating the measurement model involved four steps including an examination of (i) t-values of item loadings, (ii) 

internal consistency reliability, (iii) convergent validity, and (iv) discriminant validity. 

T-values of item loadings. The bootstrap draws a large number of sub-samples from the original data with replacements 

to approximate the sampling distribution and derive the standard error and standard deviation of the estimated 

coefficients to calculate their t-values. For the tested model, all items can be considered reliable and valid, as the t-

values of the loadings of each of them are greater than 25.  

Internal consistency reliability. The internal consistency reliability is checked by examining Cronbach’s alpha and 

composite reliability (CR). As a general rule for exploratory research, Cronbach’s alpha should be greater than 0.65 and 

CR should be greater than 0.70. Table 2 shows that these conditions are met. Cronbach’s Alpha of the factor image is 

just slightly above 0.65, but all other factors show high values. Note that we had to eliminate items because of reliability 

issues and therefore we ended up with a single item measurement for complexity and usage. Composite reliability 

values are also high for all factors. Consequently, the internal consistency reliability can be considered to be high. 

 

Table 2: Internal Consistency Reliability measures and Convergent Validity measure AVE 

 Cronbach’s alpha Composite reliability 

(CR) 

Average variance 

extracted (AVE) 

Attitude towards cloud adoption (ATT) 0.836 0.901 0.753 

Compatibility (CPT) 0.738 0.850 0.654 

Complexity (CPX) 1.000 1.000 1.000 

Image (IMG) 0.677 0.823 0.608 

Relative Advantage (REL) 0.852 0.894 0.629 

Security and trust (SEC) 0.777 0.870 0.691 

Usage (USG) 1.000 1.000 1.000 

 

Convergent Validity. The convergent validity check is done by measuring the magnitude of outer loadings and the 

average variance extracted (AVE). They measure whether the items share a large proportion of variance. The magnitude 

of outer loadings measures the reliability of indicators. The bold values in Table 3 represent these loadings, which are 

all above 0.70 and therefore support indicator reliability. Average variance extracted (AVE) is a measure that describes 

how much the variation in the items is explained by the latent variable. Table 2 shows that AVE of all items is above 

0.50. Therefore, latent variables explain a high part of the variance of their items. Since both measures are above the 

recommended limits, the convergent validity can be considered to be high. 
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Discriminant validity. The discriminant validity describes whether each latent variable is distinctly different from the 

others. This can be measured using (i) the item cross-loadings and (ii) the Fornell-Larcker criterion.  

The item cross-loadings are used to examine if each indicator (or item) loads highest on the latent variable to which it is 

assigned. Table 3 shows that all items only load very strongly (>0.75) on its own latent variable and loadings on other 

variables are much smaller. Therefore, the discriminant validity is confirmed. 

 

Table 3: Item loadings 

 ATT CPT CPX IMG REL SEC USG 

CPT1 0.364 0.816 0.317 0.379 0.410 0.321 0.080 

CPT2 0.430 0.856 0.377 0.435 0.522 0.339 0.209 

CPT3 0.334 0.750 0.315 0.372 0.364 0.252 0.059 

CPX2 0.466 0.418 1.000 0.525 0.549 0.380 0.127 

IMG1 0.342 0.382 0.409 0.753 0.458 0.456 0.111 

IMG2 0.413 0.409 0.386 0.778 0.436 0.439 0.107 

IMG3 0.391 0.360 0.432 0.807 0.525 0.424 0.027 

REL1 0.486 0.465 0.411 0.510 0.776 0.324 0.125 

REL2 0.547 0.444 0.493 0.471 0.821 0.329 0.208 

REL3 0.493 0.461 0.423 0.466 0.834 0.320 0.160 

REL5 0.493 0.381 0.415 0.487 0.747 0.374 0.169 

REL6 0.499 0.400 0.428 0.477 0.784 0.303 0.148 

SEC1 0.325 0.315 0.314 0.466 0.366 0.864 0.107 

SEC2 0.392 0.350 0.392 0.528 0.429 0.860 0.126 

SEC3 0.323 0.274 0.222 0.398 0.218 0.766 0.060 

ATT1 0.876 0.403 0.441 0.413 0.532 0.315 0.166 

ATT2 0.835 0.367 0.332 0.441 0.539 0.386 0.157 

ATT3 0.891 0.448 0.438 0.424 0.582 0.389 0.243 

USG1 0.220 0.155 0.127 0.104 0.205 0.120 1.000 

 

The Fornell-Larcker criterion is a more conservative measure of discriminant validity. It compares the square root 

(SQRT) of AVE with latent variable correlations. When the square root of the AVEs is greater, this indicates that the 

particular variable shares a greater variance with its indicators than with the other variables. Consequently, the square 
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root (SQRT) of each AVE should be greater than the correlation with any other variable. Table 4 shows this is the case 

for all factors (SQRTs of AVEs are bold). 

 

Table 4: Latent variable correlations and SQRT-AVE 

 ATT CPT CPX IMG REL SEC USG 

ATT 0.868       

CPT 0.470 0.809      

CPX 0.466 0.418 1.000     

IMG 0.490 0.491 0.525 0.780    

REL 0.636 0.543 0.549 0.608 0.793   

SEC 0.420 0.379 0.380 0.563 0.416 0.831  

USG 0.220 0.155 0.127 0.104 0.205 0.120 1.000 

 

Since all these measures are above the recommended values, the measurement model evaluation can be considered 

satisfactory. We therefore proceed to evaluate the relationships in the structural model in the next section. 

5.4 Structural model evaluation 

The evaluation of the structural model reveals the relationships between its latent variables. For that purpose, (i) the 

path t-values, (ii) the path coefficients between latent variables, (iii) amount of variance in the dependent variables, and 

(iv) the effect sizes were evaluated. 

Path t-values. First, the hypotheses have to be tested. This is done by evaluating the path t-values which are provided by 

the bootstrap routine. These values indicate the significance levels of each path and thereby the strength of support for 

the proposed hypotheses [50]. Table 5 provides an overview of the proposed hypotheses, the corresponding t-values and 

levels of significance and reveals that not all hypotheses are supported. The path t-values show significant support for 

the hypotheses H1, H2a, H2c, H3a, H4a, H4c, H5c, H6a and H6c. The remaining hypotheses (H2b, H3b, H4b, H5a, 

H5b and H6b) do not show any significant support. 

 

Table 5: Hypotheses testing results 

Hypothesis t-value p support 

H1. (+) The attitude towards cloud adoption (ATT) positively affects the actual usage (USG) of cloud computing. 2.503 <0.05 weak 

H2a. (+) A higher level of compatibility (CPT) will positively affect the attitude towards cloud adoption (ATT). 2.840 <0.01 medium 

H2b. (+) A higher level of compatibility (CPT) will positively affect the actual usage of cloud computing (USG).  0.805 ns rejection 

H2c. (+) A higher level of compatibility (CPT) will positively affect the perceived relative advantage (REL). 5.894 <0.001 strong 

H3a. (+) A higher level of perceived relative advantage (REL) will positively affect the attitude towards cloud 9.465 <0.001 strong 
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Hypothesis t-value p support 

adoption (ATT).  

H3b. (+) A higher level of perceived relative advantage (REL) will positively affect the actual usage of cloud 

computing (USG). 

1.891 ns rejection 

H4a. (-) A higher level of complexity (CPX) will negatively affect the attitude towards cloud adoption (ATT). 2.364 <0.05 weak 

H4b. (-) A higher level of complexity (CPX) will negatively affect the actual usage of cloud computing (USG). 0.080 ns rejection 

H4c. (-) A higher level of complexity (CPX) will negatively affect the perceived relative advantage of cloud 

computing (REL).  

5.635 <0.001 strong 

H5a. (+) A better image (IMG) will positively affect the attitude towards cloud adoption (ATT).  0.719 ns rejection 

H5b. (+) A better image (IMG) will positively affect the actual usage of cloud computing (USG).  1.447 ns rejection 

H5c. (+) A better image (IMG) will positively affect the perceived relative advantage of cloud computing (REL).  6.851 <0.001 strong 

H6a. (+) A higher level of security and trust (SEC) will positively affect the attitude towards cloud adoption 

(ATT). 

3.260 <0.001 strong 

H6b. (+) A higher level of security and trust (SEC) will positively affect the actual usage of cloud computing 

(USG). 

0.748 ns rejection 

H6c. (+) A higher level of security and trust (SEC) will positively affect the perceived image of cloud computing 

(IMG). 

16.730 <0.001 strong 

 

Figure 2 (next page) illustrates the results of the analysis with the asterisks next to the t-values indicating the level of 

significance of hypothesis support. Not supported hypotheses (“ns”) are shown greyed out. For the four variables 

attitude towards cloud adoption (ATT), actual usage of cloud computing (USG), perceived relative advantage (REL), 

and perceived image (IMG) the values for the corresponding R² can be found in the respective circles. 

Path coefficients. The next step of the evaluation of the structural model focuses on the path coefficients that reveal the 

direct and total effects as well as the relationship (positive or negative) between latent variables. Running the PLS 

algorithm provides the values shown in Table 6.  

 

Table 6: Direct and total effects  

  ATT CPT CPX IMG REL SEC USG 

ATT           / 1.000             0.144 /  0.144 

CPT 0.121 / 0.237           / 1.000       0.268 / 0.268     0.047 /  0.115 

CPX 0.109 / 0.221              / 1.000     0.258 / 0.258    0.004 /  0.068 

IMG 0.035 / 0.183                / 1.000   0.341 / 0.341  -0.090 / -0.021 

REL 0.434 / 0.434                / 1.000    0.123 /  0.168 
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  ATT CPT CPX IMG REL SEC USG 

SEC 0.132 / 0.235      0.563 / 0.563           /  0.192            / 1.000   0.040 /  0.047 

USG                        /  1.000  

 

 

Figure 1. Analysis results 

 

The factors of attitude towards cloud adoption (0.144), compatibility (0.115) and relative advantage (0.168) have the 

greatest total effect on actual cloud usage. All other factors have a quite weak effect. The attitude towards cloud 

adoption is mainly affected by relative advantage (0.434) which is further affected by multiple other influencing factors 

(compatibility, complexity, image, security & trust), all showing considerable effects (0.192-0.341). Additionally, it is 

worth mentioning, that the effect of security & trust on image is rather high (0.563) which agrees with the results of 

prior investigations indicating significant correlations between these two factors [6]. 
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Amount of variance in the dependent variables. The coefficient of determination, or R Square (R²), is a measure of the 

model’s predictive ability. It represents the combined effects of the independent variables on a dependent variable by 

the amount of variance in the dependent variable that is explained by all the independent variables connected to it. It 

ranges from 0 to 1 [50]. Figure 2 presents the R² values in the circle of the factors. The analysis shows that R² of 

attitude towards cloud adoption has a value of 0.456, which means 45.6% of the variance of this dependent variable is 

explained by the independent variables compatibility, complexity, relative advantage, image and security & trust. This 

is a high value that indicates that the above-named factors influence a large proportion of the users’ attitude towards 

cloud adoption. Conversely, R² of the factor actual cloud usage has a value of 0.06, which is very low. This implies that 

only 6% of the variance is explained by all the other variables of the model. Therefore, actual cloud usage is mainly 

influenced by factors that are not included in the theoretical research model. This is already indicated by Table 5 and 

Figure 2, which illustrate that the path t-values of four factors show no significant support on actual cloud usage. 

Furthermore, the R² values of relative advantage and image are also high. Security & trust accounts for 31.7% of the 

variance of image. 49.4% of the variance in relative advantage is explained by compatibility, complexity, image, and 

security & trust. Consequently, the predictive ability of the model regarding these factors is satisfying. 

Effect Sizes. Cohen’s f² is a quantitative measure of the strength of a phenomenon that assess how much every 

independent variable affects a particular dependent variable’s R². According to [52], for multiple regressions these 

effects can be considered weak (0.02 - 0.15), moderate (0.15 - 0.35) or high (>0.35). Table 7 shows that relative 

advantage is moderately affected by capability, complexity and image. Furthermore, image has a strong effect on 

security & trust. Attitude towards cloud adoption is moderately affected by relative advantage and weakly influenced 

by security. Effects on actual cloud usage are all below the limit of 0.02. 

 

Table 7: Effect sizes (f²) 

 ATT CPT CPX IMG REL SEC USG 

ATT       0.012 

CPT 0.018    0.103  0.002 

CPX 0.014    0.091  0.000 

IMG 0.001    0.146  0.004 

REL 0.175      0.007 

SEC 0.021   0.465   0.001 

USG        

 

6. Conclusions and future work 

In this paper, relevant factors influencing the intention to adopt and the actual usage of cloud services were discussed. 

The focus was on public cloud services in the organizational context. Based on widely accepted theories such as 

Rogers’ DoI theory [9], Davis’ TAM [21], and its various extensions, the paper identifies factors that impact the 

adoption and usage of cloud computing, integrates them in a theoretical research model, and operationalizes the factors. 

The research model is tested in an empirical online survey using Amazon Mechanical Turk for the acquisition of 

participants. In doing so, a sample with a fairly good mix in respect to sex, age and location was generated.  

The analysis of the structural equation model followed a two-step approach. In a first step, the measurement model was 

evaluated. Since Internal Consistency Reliability (using Cronbach’s Alpha and Composite Reliability), Convergent 

Validity (using magnitude of outer loadings and Average Variance Extracted) as well as Discriminant Validity (using 
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item cross-loadings and Fornell-Larcker criterion) could be confirmed, the measurement model evaluation was 

considered satisfactory. Consequently, the structural model evaluation revealed that the attitude towards cloud adoption 

(ATT) positively affects the actual usage of cloud computing (USG). All other hypotheses regarding the direct 

influence of certain factors on the actual usage of cloud services were rejected. However, the effect of the attitude 

towards cloud adoption (ATT) on the actual cloud usage (USG) is also low. Therefore, there are other factors, which 

were not considered in our model, that affect the actual cloud usage. A better image (IMG) seems to neither positively 

affect the attitude towards cloud adoption (ATT) nor the actual cloud usage (USG). All other factors influence the 

attitude towards cloud adoption (ATT). A higher level of compatibility (CPT), relative advantage (REL) and security & 

trust (SEC) as well as a lower level of complexity (CPX) lead to a more positive attitude towards cloud adoption (ATT). 

Limitations of this study include the data collection and sample composition using Mechanical Turk. In an experiment, 

using data collected from a large Midwestern U.S. university, an Internet board and Mechanical Turk, Paolacci and 

Chandler found that the response error was significantly lower in Mechanical Turk than in the Internet board [38]. 

Although it was noted to be more diverse than usual college samples, respondents using Internet technology are not a 

representative sample either [39], leading to the suggestions that research should be transparent in the recruiting and 

excluding of participants. As stated, this study included several mechanisms to assess the validity of the results based on 

several technical possibilities in combination with a self-assessment of the cloud workers. While efforts were 

undertaken to ensure that subjects had experience using cloud computing, their degree of knowledge concerning cloud 

computing may be quite varied. In addition, due to the diverse applications of cloud computing, the application types 

cloud storage, cloud e-mail, and cloud office were queried separately. While these are commonly used, individuals may 

actively use other cloud computing applications not included, such as cloud based customer relationship management or 

enterprise resource planning systems. However, inquiring each item for up to three cloud computing application types, 

entailed a multiplication of questions to be answered by the participants. For that reason, the number of items was kept 

low to avoid loss of data quality due to participants increasing frustration through a cavalcade of questions. This again 

led to ending up with only one item left for complexity (CPX) and actual usage of cloud computing (USG) after the 

evaluation of the research model. Concerning this matter, other possible approaches could be either to focus on fewer 

factors, or to ask questions on cloud services in general and not on multiple specific cloud application types. 

Furthermore, the results show that the model’s predictive ability on actual cloud usage (USG) is low. Consequently, 

there seem to be other factors that influence USG. While many factors that explain the motivations and barriers toward 

broad organizational adoption of cloud computing services are explored in this research, some additional factors may 

have inadvertently been omitted. This may be due to the scope of the reviewed studies, as some focus on cloud 

computing in a general context while others focus on very specific cloud services. In future research we intend to 

identify additional factors and conduct further empirical studies. 
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