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Abstract: 

Most recently, the concept of business documents has started to play double role. On one hand, a business document 

(word processing text or calculation sheet) can be used as specification tool, on the other hand the business document is 

an immanent constituent of business processes, thereby essential component of business information systems. The 

recent tendency is that the majority of documents and their contents within business information systems remain in 

semi-structured format and a lesser part of documents is transformed into schemas of structured databases. In order to 

keep the emerging situation in hand, we suggest the creation (1) a theoretical framework for modeling business 

Information Systems and (2) a design method for practical application based on the theoretical model that provides the 

structuring principles. The modeling approach that focuses on documents and their interrelationships with business 

processes assists in perceiving the activities of modern information systems. 
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1. Introduction 

The current Business Information Systems shows new behavioral properties. Namely, the documents, unstructured and 

semi-structured data, have high relevance beside the structured data. One of the directions within management sciences 

is the service-orientation. Being the business processes of companies organized by the service-orientation pattern, 

consequently, the structure of functions within Information Systems follows the model of IT (Information Technology) 

services, independently from the applied technologies as either Web, REST, Micro Services or other appropriate 

technology that are based on Services. 

These two trends – document and service centric approaches – are slowly modifying the requirements against the 

modeling methods that are intended to describe the behavior of IS [1], [3]. The documents, interactive documents and 

the emphasis on Web interfaces led to the concept of modern Information Systems. 

In the core of IS there is a set of data that delivers the required information either to the business activities or to the 

information processes. During analysis, the question that is investigated is as to whether what information should be 

kept in the system. The data and their collections exist independently from business documents that may or may not 

related to decision processes. The modeling of Information Systems focused on document should adhere to established 

practices of data and information modeling. The model should be perceivable by users at high level. The approach for 

modeling and analysis should be semantically powerful in order to serve as a basic model and be understandable by 

users. The document-centric model is unlike data models but they are interdependent on each other. The document 

model tries to gather the results of business activities and the transformations in order to extend information within 

documents with new facts (Fig. 1). 
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Fig. 1.  Levels of collections related to documents. 
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The manipulation of documents happens through business processes; moreover, the document model mirrors the 

structure of organization and events (Fig. 2). 

 

Resolution for the Approved Budget

- Year of Issue

- Document ID

Resolution for the Appointment of  Commission

- Year of Issue

- Document ID
0..1

Decision about the Costs and Expenditures

- Year of Issue

- Document ID

0..1

1

Resolution for Approval of Project

- Year of Issue

- Document ID

1

1

Decision for Approval of Project

- Year of Issue

- Document ID0..1

1 1
0..1

1

0..1

1

0..1
 

Fig. 2. Example of Class Diagram for Documents at “Document Conceptual Level” within a Case Study. 

 

Within the data model, those alterations that change elements that are significant for business should be tracked, i.e. 

create new ones, transform existing ones, set up new dependencies or adjust existing relationships. The actor or role that 

performs the data conversion should be distinguishable during transformation processes; furthermore, the collection of 

data that are linked to documents and roles should be identifiable as well. In an E-government environment, a case 

study is planned and designed to verify and validate the results of proposed modeling approach with theoretical 

background. 

In section 2 we present previous research reported in the literature. In section 3 we outline our method, making use of 

the previous approaches in a document centric approach. In section 4 it is presented the formal mathematical 

background. Section 5 presents the formalized document centric approach. Section 6 discusses the information 

architecture and documents. Finally, section 7 provides the summary and the conclusions. 

2.  Literature Review 

Joeris [1] proposed a document based approach for modeling control and data flow for business activities and data 

interchange among them. Wewers et al. [4] presented a system that supports a framework for inter-organizational, 

document oriented workflow. 

To help the perception of the complex behavior of IS the enterprise architecture approaches offer support, namely the 

Zachman ontology and TOGAF, both was developed for IS [5], [6], [7]. 

The artifact-centric business process model uses three basic concepts [8], [9]: artifact classes; tasks; and business rules. 

The tasks handle the artifacts, the business rules govern which tasks should be triggered and which artifacts will be 

manipulated [10], [11]. SOA (Service Oriented Architecture) and the related technologies as XML (Extensible Markup 

Language), SOAP (Simple Object Access Protocol), WSDL (Web Service Description Language) and UDDI (Universal 

Description, Discovery, and Integration,) permits that services to be available through the Web [12]. The Web 

documents typically in XML format can be considered the central notion of Information Systems on the Web. There are 

analysis and design problems that should be improved. Emphasizing the problems with IT rather than business 

processes hinders the modeling and abstraction of stable and reliable IS [32]. The approaches as Service Oriented 
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Computing (SOC), and Cloud Computing concentrates on services as a standardized and general information exchange 

interface towards users. There are different input data format for interchange between services [13], [14], [15]: (1) 

HTML pages; (2) SOAP messages (XML); (3) unstructured documents (XML). Unstructured documents may contain 

text, images, and other binary data, only the metadata may have formalized in XML using tags. Set of documents 

without uniform XLST (Extensible Stylesheet Language Transformations), DTD (Document Type Definition) or any 

other “style-sheets”, we consider them as set of unstructured files since there is no general principle that can be 

enforced on each single document. Unstructured documents are the typical office documents without pre-defined style-

sheets for tagging as the meta-data of documents may be tagged but the textual information is not. SOAP messages as 

XML tagged data can be regarded as structured but it may transport unstructured data. 

XML documents can be considered as application-relevant “things”, i.e. they can be perceived as new data objects to be 

stored and managed by a DBMS. This type of XML documents, in this sense, is document-centric, since their meaning 

depends on the document as a whole. The XML structure is more irregular in contrast to structured data, and data 

contained in them are heterogeneous. Chidlovskii [14], [16] provides a formal grammatical description of XML.  

The alignment and fitting between business processes and organization can be analyzed on the base of ontologies and 

semantic approaches [17], [18]. The e-commerce, e-banking, e-tourism, Web-based Enterprise Resource Systems can 

be considered as typical Information Systems on the WEB. 

To combine the previously referred approaches to model modern Information Systems, there are various proposals [2], 

[3], [19]. Blokdijk’s assembly of Information System Models [20] offers structuring principles; moreover, the axiomatic 

design approach [21] can be employed for the Information Systems provides clues for both theoretic and practical 

modeling point of view. The concept of generalized hypergraph [22] seems to be a proper mathematical formalism that 

fits to unifying all viewpoints, perspectives, artifacts and modeling elements. 

3.  Document centric approach 

On modeling IS, the data model plays a central role traditionally (Fig. 3). To harmonize the traditional data model with 

document model, we generalize the concept of data models. 
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Fig. 3. Class Diagram for Documents Class Diagram for Documents at “Data Model Conceptual Level” within a Case Study. 

  

In this representation, data models consist of collections (of data) so that each collection has a designation. The 

collections are sets of data or multi-set (bag) of data or data types with well-defined properties and structure; the most 
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typical representation of data model is either relational data model or object-relational data model (However, there are 

several concurrent representation and implementation technology). The extension of data types as occurrences compose 

subsets of dataset that can be deduced from document structures. The collections include identified data that are 

significant as their modifications over time are linked to documents (but that is not the same as the logging of database 

activities, in opposite it depicts the impact of activities related to document manipulation). 

3.1 The Document-centric Modeling 

The proposed approach is unlike to the traditional database modeling methods and the recent fashionable artifact-

centered approaches. The document-centric modeling should exist with a strong correspondence to the Enterprise 

Architecture of the given organization, with a definite emphasis on the business processes. The structure of documents 

within an organization can be mapped onto the organigram and structure of business processes through homomorphism 

(Fig. 4).  
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Fig. 4. Business Process Model - A Case. 

 

The representation of both business processes and organization structures appear within Business Process 

Owner/Manager perspective of Enterprise Architecture [7]. The needs for flexible IS lead to tendencies that can be 

formulated as a customer-centric paradigm. The customer-centric paradigm can be partly captured by a highly flexible 

document structure at the User Interface level. The documents should be adaptable to changes both in their structure and 

in their related content. There is correlation between the software architecture and the project structure of the software 

development [23]. The document model should mirror the life cycle of documents, the manipulation, the events, and 

effects by business processes. The modifications that affect the data included in documents should be traced, i.e. 

creating, modifying data items, establishing new relationship; the precedence analyses are an available option for 

tracking the impacts [20]. 

The chain of events and processes can be monitored through roles/actors and their handling of identifiable data items 

within documents. The human roles stimulate data processing activities that affects documents, consequently the data 

items as well that are included in the documents. The document-subdocument structure (Fig. 1, Fig. 2, Fig. 3) is able to 

represent both the organization and the information model at the same time. Whilst the data model is not structured as 

set of sub-data models instead it displays rather uniform configuration [20] (Fig. 5).  

Blokdijk’s model offers a structuring approach for perceiving Information Systems. The model’s major components are 

(Fig. 5): (1) organizational model; (2) information model; (3) data model; (4) process model. The process model 

provides the composition of business activities and it is strongly coupled to the control structure. However, the data 
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model is not an exact representation of the organization structure. For the reason that patterns of data model reflect the 

relevant facts about the organization but it does not map the organization structures. The document and data model 

requires a common representational method in which the services, and functions of documents, the coupled business 

activities can be depicted in a uniform manner. Furthermore, the interrelationships between the data and document 

model can be shown as much the same way as possible. There is logic of inheritance to identify data items within 

documents. Within the document chain, data elements are inherited from the previous element of documents.  
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Fig. 5. A Multi-dimensional model for interaction of Information Systems and Documents. 

3.2 Types of Documents 

The document model is composed of document types. The types of documents designate the state of their variables. 

We define the concept of binding by this way: a free field within a document; or a free variable is set for a value, i.e. 

valuated. The status and the type of documents can be inferred from the bindings; i.e. how many variables are already 

set to specific values. A generic document is a hierarchy of classes of documents. Finalizing or finishing a document 

instance within a hierarchy of a generic documents leads to that all free variables/fields are set to a certain value step-

by-step. The finalization of documents ensues from overarching business processes that can be linked to the flow of 

documents. The documents flow can be represented by data flow, Event Process Chain or Business Process Modeling 

Notation.  
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Evolution of Documents

Roles and Responsibilities

Scenes and Scenarios
 

Fig. 6. Representation the Life of Documents by Hypergraph. 

 

The free-documents – like free tuples from tableau queries – can be perceived as documents that contain unbounded 

variables. As the document evolves more and more variables valuated, finally the documents achieve a state in that the 

documents cannot contain any unbounded variables. We can call documents in this state as ground-documents. The 

parts of documents can be regarded a finalized one from the viewpoint of one of the system roles; however, the parts of 

the documents may still contain some free variables that require further processing by some other system roles. The 

external information is supplied by system roles out of the organization. i.e. outside of IS, the steps of the fulfillment 

process and their sequences are defined by business rules of the organization Valuation of a free variable needs external 

information what is supplied by system roles out of the organization, i.e. outside of Information Systems, the steps of 

the fulfillment process and their sequences are defined by business rules of the organization. For that reason, we make 

differences between the states of finalized and ground-document. However, the responsibility for recognizing the proper 

data items relates to the currently valid system role (human or business process). The previously published figure (see 

[2]) (Fig. 5) has been extended to designate the name space of document’s DBMS, emphasize the mutual mapping 

between the information related to control and business processes, and to pinpoint to set of models that play a crucial 

role in integration of enterprises and Information Systems. 

A finalized document may contain free-variables and/or error signaling variables /fields that designate the necessity for 

further processing by some certain roles. The defect resolution of documents happens typically by organizational roles, 

i.e. outside of the automated Information Systems. In the case of algorithmic approach for error handling, the further 

document processing requires an intensional treatment, and usage of intensional documents, i.e. generate document 

instances based on business rules that are fulfilled by the automated Information Systems to create extensional 

occurrences. A stable state of an instance of an overarching business process within an IS can be achieved in the case if 

all documents that were involved in it are already ground-documents. The document handling finally results in ground-

documents, ground sub-documents and assembled documents through several stages of development of to-be-finalized 

documents. The initial state is an uppermost documents and derived (intensional) documents. The intensional 
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documents may contain free variables at meta-data and data level at the same time. On finishing their processing, the 

ground-documents build up a network (Fig. 6). To establish interdependencies among ground-documents may require 

some extra information. The supplemental information may assist to finish building-up the network of documents. 

3.3 Representation of Documents 

The current standards for describing the structure of documents are the XML, DOM (Document Object Model), JSON 

[15], [31]. The conceptual data model is either represented by entity-relationship or object-oriented modeling methods. 

The interdependency between document model and data model can be represented by RDF.  

To support enterprise architecture, the recent IT architectures (SOA, REST, etc.) offer procedures as orchestration and 

choreography to create complex services along with documents. The documents may belong to various categories as 

generic, intensional, to-be-finalized, and ground-document type. The architectures provide the opportunity to create 

protective, security and safety mechanisms [5], [24]. 

The document handling finally results in ground-documents, ground sub-documents and assembled documents through 

several stages of development of to-be-finalized documents. The initial state is an uppermost documents and derived 

(intensional) documents. The intensional documents may contain free variables at meta-data and data level at the same 

time. On finishing their processing, the ground-documents build up a network. To establish interdependencies among 

ground-documents may require some extra information. The supplemental information may assist to finish building-up 

the network of documents. 

3.4 The proposed document model 

A database-centric IS model that is based on an information theory approach [25] outlines a framework that describes 

the input, output and query processing. Fig. 7 contains the IS model indicated by the dashed line; the previously 

published version [2] was enhanced to express that the source code data outside of the system and the code generated by 

the information system towards destination are communicated through a crust consisting of documents. In computerized 

systems, interactive documents and Web services become visible on the source and the output side. Free documents 

appear at the interface/façade level. The system roles (either human or automated system) perform variable valuation, 

or binding at each single variable through simple tasks. The business activities consist of tasks; a task can be composed 

of elementary tasks. An elementary task can be coupled to specific variables and its manipulation. The end-users who 

typically use information can retrieve data through documents, e.g. querying and fetching data from database and then 

processing the obtained responses. 

The two sides of the model, the input and potential output data are separated by the document model in the Fig. 7. 

Although the various possible states and instances of document types integrates both sides at the same time. The two 

sides show the same behavior but provide different services. The twofold behavior is actually either querying or 

alteration like. 

In front of data model and its manifestation in the form of a database system, a new, document model should be placed 

in. Beside the logical formulation of data retrieval and modification, the model should contain the description for 

sequences of interaction among documents; moreover, they should deal with collection of documents. 

We can make difference between documents as being static or dynamic. The structure of a dynamic document may 

change as the response that is triggered by the system or system roles indicate it. The response may create instances of a 

general dynamic document that results in a sequence of free documents. The free documents are gradually converted 

into ground-documents starting from generic ones through intensional ones to be finalized and ground-documents. The 

ground-documents do not include any free variables thereby the names of variables in the ground-documents can be 

placed into the name-space of database. 
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The system of documents – generic, intensional, free-documents, to-be-finalized and ground-documents – can be 

perceived as a meta-database. This meta-database encloses not only static structures, but it includes active component as 

well that can be realized by web services. The active component incorporates the potential program code for 

interactions among the system roles, documents etc. The active components encapsulate the codes for database 

management too. The above-mentioned techniques can be integrated into a unified framework (Fig. 3, Fig. 4). 

Although, there is a lack for a comprehensive and not too complex scheme that combines all elements required for 

modeling Information Systems from a document-centric viewpoint and it is computable. Our proposal takes a step into 

the direction that both theoretic modeling and engineering viewpoint can be vindicated in a unified approach. The 

hypergraph as an appropriate mathematical tool may serve as a unifying approach to reconcile the before-mentioned 

heterogeneous model into a unified schema. 
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Fig. 7. Information Systems’ model in a document-centric approach. 

4.  Formal mathematical background 

Hypergraphs. As we have outlined previously, the problem to be solved can be described as a set of complex, 

heterogeneous relationships. The basic components that appear as constituent participate sometimes in hierarchical, 

sometimes rather network-like relationships that are different to each other. The hypergraphs as mathematical structure 

seems to be apt to representing the interrelationships among the models, views, viewpoints, perspectives, and the 

overarching documents and business processes [7].  

We start with the basic definitions of hypergraphs in order to employ for depicting the before-mentioned complex 

relationships.  

Definition 1. A hypergraph H is a pair (V, E) of a finite set V = {v1,..., vn} and a set E of nonempty subsets of V. The 

elements of V are called vertices; the elements of E are called edges [22].  

Definition 2. Generalized or extended hypergraph. The notion of hypergraph may be extended so that the hyperedges 

can be represented – in certain cases – as vertices, i.e. a hyperedge e may consist of both vertices and hyperedges as 

well. The hyperedges that are contained within the hyperedge e should be different from e [22]. 
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The hypergraphs as a tool for describing Information Systems from various viewpoints yields a formal method to 

analyze the system, and to check the conformance, compliance and consistency of the set of models. The representation 

created by the above-mentioned way can be leveraged for design and operational purposes as well. Considering a 

document model, a particular document type hierarchy can be perceived as a “hierarchy” of hyperedges. The free 

variables or placeholders to be filled-in may occur as ultimate vertices within hyperedges that represents the instance of 

extension of particular document type. In a document subpart hierarchy, a specific subpart of document may be denoted 

by a vertex within a particular hyperedge that describes this document that contains the subpart, although that subpart as 

a vertex may include a document type hierarchy that can be depicted by a hyperedge. 

Definition 3. A directed hypergraph is an ordered pair  

  I}:ie{EV;H
i
  (1) 

Where V is a finite set of vertices end E  is a set of hyperarcs (directed hyperedge) with finite index set I. Every 

hyperarc ie  can be perceived as an ordered pair 
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Fig. 8. Example for Directed Hypergraph Representing a Sample of Essential Relationships. 

 

Where Ve
i


 is the set of vertices of 


ie and Vei 


 is the set of vertices 


ie . The elements of 


ie  (hyperedges 

and/or vertices) are called tail of ie , while elements of 


ie are called head [22]. We may use as shorthand notation for 

ordered pairs, e.g. a vertex and a directed hyperedge as ordered pair <vi, ej>. 

The underlying graph representation is based on the hypergraphs and directed hypergraphs. The potential 

implementations of hypergraphs in a hypergraph database make allowance for linking attributes to vertices, even more 

to hyperedges. The target domain, namely documents and model of Information Systems within organizations, contains 

complex n-ary relationships. The hypergraph provides the opportunity to depict recursive construction, to describe 
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logical relations, to store compound structures along with their values [26], [27], [28]. As an illustration of the basic 

concepts of directed hypergraph, an example can be seen in Fig. 8. that makes sense of the representation for the 

domain by hypergraph. The essential characteristics is that vertices contain composite constituents that are themselves 

may be graphs; generalized hyperedge may contain other hyperedges but not itself and vertices.  

 

Definition 4. Architecture Describing Hypergraph is a generalized hypergraph with undirected and directed 

hyperedges. It can be designated as a tuple Attr,E,E,E,A,V
DU

: 

 V is the set of vertices; 

 A is the set of arcs, i.e. directed edges, an arc is an ordered pair j,i , where Vj,i  ; 

 E is the set of hyperedges; 

 EU is the set of the undirected hyperedges, because of the properties of generalized hypergraphs, a hyperedge e is 

 either Ve,e  , (basic hyperedge),  

 or a bag of hyperedges; 

 EU is divided up at a meta-level into partitions: 

─ EC consists of the configuration hyperedges. Each hi  EC is a simple hyperedge, i.e. containing only vertices, not 

complex structures and other hyperedges. All hi  EC can be labeled unambiguously. The configuration 

hyperedges manifests the structure of “things”, the vertices within a hyperedge are the properties of the specific 

“thing”. The properties can be perceived as variables or attributes (depending on the context) that can be valuated 

thereby they linked to an individual value (vertex in D (see Definition 6.)) or a set of values, e.g. to a grouping 

hyperedge; 

─ EE is composed of the extensional hyperedges. The extensional hyperedges can represent collections of data, the 

instances of generic documents. For example, the collections of data can be built up by tuples of data items, the 

instances of documents can be composed of certain bags of free variables that are contained in the particular 

documents’ object structure. In these examples, the distinct elements, the vertices of these hyperedges can be 

considered as constituents of extensional hyperedges; 

─ EI comprises the intensional hyperedges. The intensional hyperedges show the logical and rule-based 

interrelationships among the vertices (models within the architecture), moreover configuration hyperedges; 

─ EG is made up of grouping hyperedges that embody various structuring principles on components, as e.g. view, 

viewpoint and perspectives etc. in architecture describing approaches; they symbolize interrelationships between 

certain models and pieces or parts of documents as e.g. business activity models, documents and responsibilities 

of roles within an organization unit. The hyperedge h  EG can be utilized for sorting the vertices (representing 

either documents or models) into organizational-related, document-related and activity related relationships. 

 ED is a set of hyperarcs, i.e. directed hyperedges; the hyperarc 
i
e  ED can be as it follows (see Definition 3): 

─ 
i
e =< vj, h  >=    








  he,ie;i,vee iijii  where vj  V, and h   EG; 

─ 
i
e =< vj, h >=    








  he,ie;i,vee iijii  where vj  V, and h   EC; 

─ 
i
e =< vj, h  >=    








  he,ie;i,vee iijii  where vj  V, and h   EE; 
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─  there does not exist two hyperarcs ie =< vj, h  > and ke =< vl, h

 > that either  or  

E
hh

C
hh ,, EE 


, i.e. 

every vertex vj  V is linked, at most, to one configuration hyperedge (EC) and at most to one extensional 

hyperedge (EE). These conditions can be interpreted the following way: a vertex may belong to a configuration 

structure (either document or model), or it may belong to an extension that represents the instantiation of either a 

document or a model. 

Description Logics. One of the most common approaches of formalization is the use of some mathematical-logical 

language. The Description Logics belong to mathematical logics, and their purpose is formal knowledge representation 

[29]. Compared to propositional calculus (or propositional logic), the expressiveness of description logic is higher, and 

it has a more efficient algorithm for the decision problem than the first-order predicate logic. On the other hand, the 

network like knowledge representation - where the elements of the network are vertices and links are relationships as 

e.g. the semantic net- work - can be related to the theory of hypergraphs. In both case, vertices can be used to define 

concepts, and links can be used to characterize the relationships among them. Bearing this in mind, it is obvious to 

apply description logic on a system based on the mathematical background of hypergraphs. 

The knowledge representation systems based on Description Logics contains two main components: the TBox, and the 

ABox. The TBox introduces the terminology, i.e., the basic concepts, which denote sets of individuals (atomic and 

complex), and roles, which define binary relations between individuals. These are forming the vocabulary of an 

application domain. The ABox contains assertions among named individuals and the vocabulary. 

There are many variations of the Description Logics (originated from the varieties of description languages) and there is 

an informal convention, where their name indicates which operators are allowed. For example, a basic logical language 

is the Attributive Language – AL, which allows: atomic negation; concept intersection; limited existential 

quantification; and universal restriction. This can be extended with other operators, as e.g. concept union (U), full 

existential qualification (E), cardinality restriction (N), or complex concept negation (C). The description language lays 

the groundwork for the description logic [29]. 

To illustrate Description Logic in document centric environment, we show some examples below: 

 With Parameter ⊑ (Free Variable ⊔ Bound Variable) notation we describe, that a document parameter can be either 

free or bound variable. 

 Parameter ⊑ ∃is_part_of. (Document Fragment) means, that a document fragment consists of parameters, and 

Document Fragment. ∃ is_derived. (Free Document) means, that the document fragments are derived from 

unprocessed free documents. 

 State.P ⊑ ∃has_successor. (Action State.Q) means, that Q action-state follows the P state. 

 The following line describe, that an action-state needs free variables to work with: Action State ⊑ 

∃has_free_variables (Document); has_free_variables ≡ ≥ 1 is_free_variable ⊓ is_free_parameter.Parameter 

The output of a well-designed formalization of an information system that is depicted by description logics and – at the 

same time – represented by a hypergraph exists in machine-readable format thereby this formalization has the 

opportunity to use various frameworks and tools to evaluate the model. With this it is possible to effectively optimize 

the information system even in the early model-development phase. 

5.  Formalized Document Centric Approach 

In the case of a particular organization, we can imagine that there is a comprehensive document that is a representation, 

in conceptual sense, all potential documents. This overarching document is composed of generic document types. 

Generic document types are hierarchical structures that can be described by configuration hyperedges that reflect the 

composition of documents. There are hierarchical relations among the members of a generic document. The hierarchical 
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relationships can be described by configuration hyperedges; the instances of a generic document member can be 

perceived as extensions and can be represented by extensional hyperedges. 

There is an approach that recognizes documents as “a unit of business information exchanged in a business 

transaction’’, i.e. as a medium for message exchange between business partners [30]. Business can be perceived as a 

general notion in this context, namely the entirety of commercial and non-profit companies, public services and public 

administration as branches of economy and societal life use documents, and decisively electronic documents. Because 

of proliferation of computer literacy, the users’ requirements stated more frequently in the form of documents as e.g. 

word processors, calculation tables, etc. There are several sectors of IT applications where documents in various 

conceptual forms play important roles. A document can be described technically by XML schema, and additional or 

contextual information may be supplied by DTD, XLink, XInclude, XSL/XSLT. The Document Object Model (DOM) 

yields an object-centric representation for documents [31]. 

 

 

Fig. 9. Interrelationships of Documents Represented by Hyperedges. 

 

In our approach, we emphasize the existence of overarching document as a projection of the embracing organization. 

The parts and subparts of documents and document hierarchies are the subject of operation that initiated by business 

processes, activities and tasks. The responsibilities for executing the operation linked to roles within the organization. 

The documents utilize the underlying collections of data and thereby the serve as media to facilitate the data flow within 

organization. 

A generic document type GDT is a hierarchy of document types DTH. The elements of DTH can belong to a 

configuration hyperedge eCi as vertices. The generalized hypergraphs allow that the vertices may appear as complex 

structures, as hyperedges. Therefore, a vertex can be a hyperedge that itself a configuration hyperedge that contains a 

hierarchy of document types. Thereby, the representation makes possible for a recursive definition of document types 

and gathering them into a generic document type. 

The direction of the hyperarc shows whether a document plays the input or output role in a particular context (Fig. 9). 

The definition of the hyperarc is given above (see formula (2)) permits the differentiation between the information 
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represented by the head and tail of a hyperarc, and the information that are represented in the form of vertices that are 

contained within the heads and the tails [22]. 

Definition 5. The Document Subhypergraph consists of: 

 A finite set of documents that are represented by vertices DOC= {doc1, …, docn}; 

 The documents contain variables, the variables belong to certain attribute type of Attr= {T1, …, Tn} that consist of 

the attribute types; 

 The finite set of domains is DOMSET= {D1….Dk} that contains the domain of each single type, Ti; 

 The relationship between a generic document type GDT hierarchy and its constituents document types belonging to a 

DTH can be described by hyperarcs representing is-a relationships; the hierarchy is a mapping of super type-subtype 

relationships between document types. The relationships can be deduced from the variables, their attributes and the 

types of attributes.  

 The relationship between a document doci and a document type DT can be described by a hyperarc representing the 

instance-of relationship.  

The instances of a document type can be linked to the particular document type through an extension hyperedge. The 

document instance contains typically free-variables; thus these document instances can be called as free-documents. 

Free documents as document instances and extensions of document types are the subject of manipulation by business 

processes. A value for a variable can be a new fact or a new free-document of appropriate types. The concept of generic 

document type offers possibilities for derivation of new document types from other document types that can be regarded 

as templates. The derivation rules can be formalized by logical statement that may create either a slightly different 

document type according to the structure of documents and then an instance of it or operate during the lifecycle of an 

instance of the document types. A document type may contain business rules in the form of predicates, data retrieving 

and calculation rules. Both cases demand operators that create documents through intension, i.e. logical inferences. To 

depict these relationships, the intensional hyperedges can be used. The common characteristics in both cases is that 

neither the creation of a new document type and its instance nor a document instance with more valuated variables 

require human interaction through business processes and activities, they should be fully automated. A fully automated 

business process may be described in BPEL (Business Process Execution Language), but the full automation raises 

several issues that should be handled if there is no direct human, external interaction at a certain point of time during the 

execution. During their lifecycles, the free variables of free-documents are valuated, i.e. a variable is set for a value. A 

document is modified during processing by business activities in the context of actual responsibilities (organization 

units, roles, actors).  A document may achieve the finalized status but the policy and rules of organizations permits 

further processing in some cases. When a document is in such a status that it cannot be modified in any case then this 

document can be called ground document. This situation is typical in public administration as it manufactures document 

during the business process and ships a ground document to the customer. The time is important factor of life cycle of 

documents. The interplay between business activities and documents moves through the time dimension.  

6.  Information Architecture and Documents 

As we have seen previously, the documents are strongly coupled to their embracing organization context, even defining 

the appropriate document types request referencing to the related activities. Beside the essential documents, IS can be 

described by various models that are ordered into a reasonable structure by Enterprise Architecture approach. To 

describe the document manipulation requires operators so that we can extend the definition: 

 

Definition 6. Architecture Describing Hypergraph is a generalized hypergraph that can be extended by some functions 

and operations: 
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 
nodenode LVlabel : ; where L is a set of labels, it is a vertex labeling function;  

 
edgeedge LElabel : ; where L is a set of labels, it is an edge labeling function; 

 ;VEsourceE :  

 ;VEtarget E :   these functions return the source and target vertices of an edge E; 

  ;VAttrattr : attribute assignment function; 

 ;VAttrsource Attr :  The vertex that owns the attribute is returned; 

 ;DAttrtarget Attr :  The data values of attributes are yielded; D represents the set of data. 

 D can be grasped (efficiency of the representation is left out of the investigation) again as vertices within the 

hypergraph and it can be interpreted as variables. 

 Over D as a set of variables, set of operations (OP) can be defined that can be used to describe constraints and rules 

within formulas.  

 

Table 1. Representation of Information Systems by Hypergraph. 

Concept of Information System Theory Representation of concept in the domain of hypergraph theory 

Information System  A result of a system-development exercise that created a set of design artifacts. The set of elements 

and relationships among them can be represented as vertices and edges within the graph. We can 

map the model elements to a hypergraph that consists of vertices and hyperedges. 

Node/vertex in a hypergraph Each vertex corresponds to an element within an Information Systems, e.g. documents, elements of 

documents (constituting a tree structure), business processes, workflows, layers of workflows, web 

services, networks of web services, etc.  The documents may represent one of the aspects for the 

information flow both inwards and outwards. 

Edge in a hypergraph Edge is a specific hyperedge with cardinality equal to two. Edge denotes binary relationships 

between two vertices, as e.g. free documents is processed by a certain Web service, a generic 

document is the ancestor of an intensional documents, a free-document resulted in a ground-

document after binding, valuating of variables, etc.  

Hyperedge A hyperedge represents a relationship among a subset of vertices as e.g. Web services belonging to 

a specific workflow, business process containing workflows, etc.  

System graph A hypergraph that includes a disjoint vertex for modeling the environment of the system, plus all the 

vertices and hyperedges of the WIS. 

Sub-system A subset of vertices and their incident hyperedges. A vertex is incident to a hyperedge if the 

hyperedge contains the vertex. A sub-system may be composed of documents, Web services and 

related entities out of data model, etc. 

Interconnecting sub-systems hyperedges 

graph of the generalized hypergraph 

A graph consisting of all the vertices in a sub-system and all hyperedges connecting together 

subsystems. 

 

Beside the documents, the various models that follow some architectural description and system design style are 

essential constituents of IS (Table 1). The hypergraph representation gives the chance to represent the complex 

interactions and interrelationships among models and documents that drives the behavior of systems. The object-

oriented paradigm and UML visual language proliferated as specification language for models. For the uniform 

discussion, we presume that all of the models in line with the UML modeling and visual language standard, moreover 

their representations pursue the object-oriented, meta-data structure codified into standard. The models’ descriptions 

appear usually in semi-structured document forms as XML and/or JSON that offers a chance for uniform treatment of 

documents and models of Information Systems. As structuring principal for models of IS, we can use Zachman 

ontology and/or TOGAF (Fig. 5) [6], [7]. A model is a description of specific properties of an IS and it represents an 



Formal approach to modeling of modern Information Systems

 

 

 

 

International Journal of Information Systems and Project Management, Vol. 4, No. 4, 2016, 69-89 

◄ 84 ► 

artifact of views, viewpoints and perspectives [7]; or it can be perceived as an architectural building block of the system 

[6]. The set of relations among models and the internal structure of models plays essential role. 

The models can be arranged into three meta-groups namely organization, documents and activities related models. For 

modeling, the relationships and interactions among these three meta-groups and the underlying collections of data are 

significant. The models, documents and concepts of IS and a vertex representing the external environment compose a 

hypergraph that embraces all important parts of the application domain that may be called as System Hypergraph. The 

specific models can be considered as complex structures, and at the first cut, they can be represented as vertices 

containing the information about the model, possibly in the form of a hypergraph, because of generalized hypergraph 

permits to set up a hierarchy. We may structure the overarching hypergraph several sub-hypergraphs as documents, 

organization and its units, underlying data collections, business processes and their constituents.  

We can exploit the flexibility of hypergraphs to describe relationships. A hyperedge, and a hyperarc (directed 

hyperedge) can depict various relationships. In the case of documents, a hyperarc can express the input and output roles 

of documents that they may fulfil within activities of business processes. The document may be attached to organization 

units and actors through a responsibility hyperedge (labelled directed hyperedge). The variables of documents may be 

connected to data vertices of D that is organized into reasonable partitions that are represented by vertices contained in 

hyperedges that can be mutually mapped to specific data collections. These sub-hypergraphs may be called Sub-system 

Hypergraphs. Between the models, a refinement relation can be identified within an architectural perspective (Fig. 5) 

and represented by a hyperarc (directed hyperedge) is-a-refinement. The documents and their structures can be 

described by documents model.  

Definition 7. Models of IS represented in the Architecture Describing Hypergraph are: 

 The set of vertices is divided up into two basic subsets VDoc and VModel; 

 VDoc {OGDT} where OGDT signifies the overarching generic document, that is the super type of all other 

document types and their instances; 

 VModel {EA, {external_evironment}}, where EA designates the overall Enterprise Architecture consisting of models, 

the external_evironment refers to the outside world that is typically the source of stimulus that is generated by either 

humans or any other systems; 

 VConfiguration =  hi where hi  EC, and  hi =  where hi  EC. 

The expressions articulate the fact that the configuration hyperedges represents the structure of artifacts of models and 

documents in the form of structural constituents as vertices.  

 The set of arcs (directed edges of graphs) A is partitioned into subsets ADoc_Target, AModel_Target, AInteraction, where 

ADoc_Target  VConfiguration × VDoc, AModel_Target  VConfiguration × VModel.  

 

The directed edges, the arcs map a complex structure, a configuration of elements (vertices) to a vertex that represents 

either a document or a model. 

 HAInteraction  VModel × VDoc, HAInteraction  ED;  

The interaction between certain models and specific documents can be expressed by a hyperedge h  HAInteraction. 

 EC can be partitioned into two subsets EConfiguration_Document  and EConfiguration_Model. 
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The hyperedges hi, cd  EConfiguration_Document, hj, cd  EConfiguration_Model represent an inheritance structure. The inheritance 

structure conforms to the object-oriented paradigm, i.e. the configuration of documents and models inherit the attributes 

of super-classes, and may have extra attributes as well. Each attribute of a certain configuration can be represented by a 

vertex of the hyperedge. An attribute linked to a vertex either in VModel or in VDoc, its value represented by a link to a d  

D when it is valuated. If the attribute is multi-valued, then the attribute is connected to hyperedge h  Power (D) (the 

power set of D). 

 The set of extensional hyperedges EE is split into two subsets ESuperclass and EExtension 

 The hyperarc h  ESuperclass, if h  EE, (h set of vertices) 

 Either h  VDoc and OGDT  h  

  or h  VModel and EA  h.  

 Given a vertex vi h and h’  ESuperclass, then either valid that < vi, h’ >  ESuper_doc, then h’  h 

 Or < vi, h’ >  ESuper_model. then h’  h 

 Notation: ESuper_doc= VDoc \ {OGDT}) × ESuperclass   ED; 

 Notation: ESuper_model= ((VModel \ {EA, {external_evironment}}) × ESuperclass  ED). 

The hyperedges h  ESuperclass provide the association between a class of objects (models or documents) and its super-

classes in compliance to the object-oriented paradigm. For the reason for our modeling approach, we make distinction 

between the two top super-classes, namely OGDT, the overarching generic document, EA the overall Enterprise 

Architecture. The conditions above specify the transitivity of is-a relationship for the relation between class and its 

super-classes. 

 The instances of models can be represented by EInstance_model  VModel × EE (extensional); 

 The instances of documents can be represented by EInstance_doc  VDoc × EE; 

 h  EE, (h set of vertices) is h EAttribute_Set if h D. The following statement is valid as well:   hi = D, hi 

EAttribute_Set. The hyperarcs h EAttribute_Set are used to represent the attributes domains, and the associated values; 

 The hyperarc h  EExtension, if h  EE, (h set of vertices) and  

 Given a vertex vi h  VDoc and h  EExtension, then < vi, h >  EInstance_doc, < vi, h’ > ESuper_doc, then for each n  h 

and each dt  h’  ha  EE (hyperarc) where < dt, ha >   EInstance_doc; 

 Or 

  Given a vertex vi h  VModel and h  EExtension, then < vi, h >  EInstance_model, < vi, h’ >  ESuper_model, then for each 

n  h and each dt  h’  ha  EE (hyperarc) where < dt , ha >   EInstance_model. 

A hyperedge h  EExtension represents an extension for models and documents respectively as well. The above described 

statement formalizes the transitivity of instance-of relationship. 

 The intensional hyperarc h  EI, < d, h>  EIntension if EIntension  VDoc × EI, d  VDoc, h   EConfiguration_Document, h  

VDoc; the intensional hyperarc defines the hierarchical relationship between templates, rule-based document types and 

extensional document types that are instantiated. 

 The set of hyperarcs (directed hyperedges) in ED can be arranged into several subsets according to the notion of 

Enterprise Architecture: 

 The hyperarc h EView  EG, h  VModel, represents a stakeholder’s view that puts together models that describe 

the specific viewpoint of a role within organization. The hyperarc may be defined as <ri, mj = (ei
-; j  I)>, where ri 

represents a vertex within an organizational model and it is mapped to a role of organization; mj  EInstance_model, or 

mj  EConfiguration_Model before instantiation of models; 
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 The hyperarc h EPerspective  EG, h  Powerset (VModel ), embodies a hierarchy of models according to a 

refinement hierarchy; 

 The hyperarc h EDoc_Life_cycle  EG, <d, h>  EInstance_doc× EInstance_model, d  VDoc, that depicts the life cycle of 

document through the interactions with models.  

7. Conclusion 

We have described issues and problems of modeling IS. The recent evolution of technologies at user interface level and 

database handling raised questions that can be solved through new modeling approaches taking into account of 

ubiquitous documents as data holder. 

Using of successful methods for single particular views, viewpoints and models, a framework for unifying the various 

approaches is outlined. To provide a theoretically sound but reasonable complex and comprehensive approach for 

description and research of IS a hypergraph based method is proposed (Table 1). The direction of future research is to 

exploit the hypergraph as mathematical model to formalize the IS’ model from a document centric view. 

In this paper we proposed an Architecture Describing Hypergraph as representation for Enterprise Architectures and 

related Documents. The suggested descriptive method takes advantages from the basic properties of generalized 

hypergraphs, i.e. unequivocal representation of complex relationships; moreover, there are some distinguished features: 

 Uniform treatment of both intensional and extensional aspects of documents and models within Enterprise 

Architecture; 

 Direct depiction of hierarchical relationships through instance-of, sub-class-of, super-class-of relationships. 

The outlined approach can also be considered as a formal background to analyze and design IS. The documents play 

important roles in Information Systems in the time of analysis, design, specification and operation with strong coupling 

to roles of organizations. The unified framework provides an opportunity for uniform handling of models and 

documents on a formal foundation. 

The hypergraph–based approach offers the chance to apply further mathematical tools for assistance in the design, 

verification and validation to maintain the integrity and consistency of IS. 
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