

ISSN (print):2182-7796, ISSN (online):2182-7788, ISSN (cd-rom):2182-780X

Available online at www.sciencesphere.org/ijispm

International Journal of Information Systems and Project Management, Vol. 4, No. 4, 2016, 69-89

◄ 69 ►

Formal approach to modeling of modern information

systems

Bálint Molnár

Information Systems Department, Eötvös Loránd University

Pázmány Péter sétány 1/C, Budapest, 1117

Hungary

www.shortbio.net/molnarba@inf.elte.hu

András Benczúr

Information Systems Department, Eötvös Loránd University

Pázmány Péter sétány 1/C, Budapest, 1117

Hungary

www.shortbio.net/abenczur@inf.elte.hu

András Béleczki

Information Systems Department, Eötvös Loránd University

Pázmány Péter sétány 1/C, Budapest, 1117

Hungary

www.shortbio.net/bearaai@inf.elte.hu

Abstract:

Most recently, the concept of business documents has started to play double role. On one hand, a business document

(word processing text or calculation sheet) can be used as specification tool, on the other hand the business document is

an immanent constituent of business processes, thereby essential component of business information systems. The

recent tendency is that the majority of documents and their contents within business information systems remain in

semi-structured format and a lesser part of documents is transformed into schemas of structured databases. In order to

keep the emerging situation in hand, we suggest the creation (1) a theoretical framework for modeling business

Information Systems and (2) a design method for practical application based on the theoretical model that provides the

structuring principles. The modeling approach that focuses on documents and their interrelationships with business

processes assists in perceiving the activities of modern information systems.

Keywords:
formal modeling; document centric process and data modeling; information system architecture; information systems

modeling.

DOI: 10.12821/ijispm040404

Manuscript received: 20 January 2016

Manuscript accepted: 28 November 2017

Copyr ight © 2016, SciKA. General permission to republish in pr int or electronic forms, but not for profit , a ll or part of this mater ial is gran ted, provided that the

Internat ional Journal o f Informat ion Systems and Pro ject Management copyr ight notice is given and that reference made to the publicat ion, to its date of issue, and to

the fact that reprint ing pr ivileges were granted by permiss ion o f SciKA - Associat ion for Promotion and Disseminat ion o f Scient ific Knowledge.

http://www.sciencesphere.org/ijispm
https://d.docs.live.net/0536697bd8769d6c/www.shortbio.net/molnarba@inf.elte.hu
mailto:abenczur@inf.elte.hu
mailto:bearaai@inf.elte.hu

Formal approach to modeling of modern Information Systems

International Journal of Information Systems and Project Management, Vol. 4, No. 4, 2016, 69-89

◄ 70 ►

1. Introduction

The current Business Information Systems shows new behavioral properties. Namely, the documents, unstructured and

semi-structured data, have high relevance beside the structured data. One of the directions within management sciences

is the service-orientation. Being the business processes of companies organized by the service-orientation pattern,

consequently, the structure of functions within Information Systems follows the model of IT (Information Technology)

services, independently from the applied technologies as either Web, REST, Micro Services or other appropriate

technology that are based on Services.

These two trends – document and service centric approaches – are slowly modifying the requirements against the

modeling methods that are intended to describe the behavior of IS [1], [3]. The documents, interactive documents and

the emphasis on Web interfaces led to the concept of modern Information Systems.

In the core of IS there is a set of data that delivers the required information either to the business activities or to the

information processes. During analysis, the question that is investigated is as to whether what information should be

kept in the system. The data and their collections exist independently from business documents that may or may not

related to decision processes. The modeling of Information Systems focused on document should adhere to established

practices of data and information modeling. The model should be perceivable by users at high level. The approach for

modeling and analysis should be semantically powerful in order to serve as a basic model and be understandable by

users. The document-centric model is unlike data models but they are interdependent on each other. The document

model tries to gather the results of business activities and the transformations in order to extend information within

documents with new facts (Fig. 1).

Document

Object

D
o

c
u

m
e

n
t

c
o

n
s

is
ts

 o
f

e
lm

e
n

ts
/

ta
g

s

Element object

of Document

Element object

of Document

Element object

of Document Element object

of Document

 .

Element

object of

Document

Element

object of

Document

Element

object of

Document

Elements may own other elements

Attribute

object of

Document

Attribute

object of

Document

Attribute

object of

Document

Element may own other elements

Text object

Text object

Document

object

Node list object

1

*

Element

object of

Document

Element

object of

Document

Element

object of

Document

Elements may own other elements

* *

Fig. 1. Levels of collections related to documents.

Formal approach to modeling of modern Information Systems

International Journal of Information Systems and Project Management, Vol. 4, No. 4, 2016, 69-89

◄ 71 ►

The manipulation of documents happens through business processes; moreover, the document model mirrors the

structure of organization and events (Fig. 2).

Resolution for the Approved Budget

- Year of Issue

- Document ID

Resolution for the Appointment of Commission

- Year of Issue

- Document ID
0..1

Decision about the Costs and Expenditures

- Year of Issue

- Document ID

0..1

1

Resolution for Approval of Project

- Year of Issue

- Document ID

1

1

Decision for Approval of Project

- Year of Issue

- Document ID0..1

1 1
0..1

1

0..1

1

0..1

Fig. 2. Example of Class Diagram for Documents at “Document Conceptual Level” within a Case Study.

Within the data model, those alterations that change elements that are significant for business should be tracked, i.e.

create new ones, transform existing ones, set up new dependencies or adjust existing relationships. The actor or role that

performs the data conversion should be distinguishable during transformation processes; furthermore, the collection of

data that are linked to documents and roles should be identifiable as well. In an E-government environment, a case

study is planned and designed to verify and validate the results of proposed modeling approach with theoretical

background.

In section 2 we present previous research reported in the literature. In section 3 we outline our method, making use of

the previous approaches in a document centric approach. In section 4 it is presented the formal mathematical

background. Section 5 presents the formalized document centric approach. Section 6 discusses the information

architecture and documents. Finally, section 7 provides the summary and the conclusions.

2. Literature Review

Joeris [1] proposed a document based approach for modeling control and data flow for business activities and data

interchange among them. Wewers et al. [4] presented a system that supports a framework for inter-organizational,

document oriented workflow.

To help the perception of the complex behavior of IS the enterprise architecture approaches offer support, namely the

Zachman ontology and TOGAF, both was developed for IS [5], [6], [7].

The artifact-centric business process model uses three basic concepts [8], [9]: artifact classes; tasks; and business rules.

The tasks handle the artifacts, the business rules govern which tasks should be triggered and which artifacts will be

manipulated [10], [11]. SOA (Service Oriented Architecture) and the related technologies as XML (Extensible Markup

Language), SOAP (Simple Object Access Protocol), WSDL (Web Service Description Language) and UDDI (Universal

Description, Discovery, and Integration,) permits that services to be available through the Web [12]. The Web

documents typically in XML format can be considered the central notion of Information Systems on the Web. There are

analysis and design problems that should be improved. Emphasizing the problems with IT rather than business

processes hinders the modeling and abstraction of stable and reliable IS [32]. The approaches as Service Oriented

Formal approach to modeling of modern Information Systems

International Journal of Information Systems and Project Management, Vol. 4, No. 4, 2016, 69-89

◄ 72 ►

Computing (SOC), and Cloud Computing concentrates on services as a standardized and general information exchange

interface towards users. There are different input data format for interchange between services [13], [14], [15]: (1)

HTML pages; (2) SOAP messages (XML); (3) unstructured documents (XML). Unstructured documents may contain

text, images, and other binary data, only the metadata may have formalized in XML using tags. Set of documents

without uniform XLST (Extensible Stylesheet Language Transformations), DTD (Document Type Definition) or any

other “style-sheets”, we consider them as set of unstructured files since there is no general principle that can be

enforced on each single document. Unstructured documents are the typical office documents without pre-defined style-

sheets for tagging as the meta-data of documents may be tagged but the textual information is not. SOAP messages as

XML tagged data can be regarded as structured but it may transport unstructured data.

XML documents can be considered as application-relevant “things”, i.e. they can be perceived as new data objects to be

stored and managed by a DBMS. This type of XML documents, in this sense, is document-centric, since their meaning

depends on the document as a whole. The XML structure is more irregular in contrast to structured data, and data

contained in them are heterogeneous. Chidlovskii [14], [16] provides a formal grammatical description of XML.

The alignment and fitting between business processes and organization can be analyzed on the base of ontologies and

semantic approaches [17], [18]. The e-commerce, e-banking, e-tourism, Web-based Enterprise Resource Systems can

be considered as typical Information Systems on the WEB.

To combine the previously referred approaches to model modern Information Systems, there are various proposals [2],

[3], [19]. Blokdijk’s assembly of Information System Models [20] offers structuring principles; moreover, the axiomatic

design approach [21] can be employed for the Information Systems provides clues for both theoretic and practical

modeling point of view. The concept of generalized hypergraph [22] seems to be a proper mathematical formalism that

fits to unifying all viewpoints, perspectives, artifacts and modeling elements.

3. Document centric approach

On modeling IS, the data model plays a central role traditionally (Fig. 3). To harmonize the traditional data model with

document model, we generalize the concept of data models.

Budget

Plan Actual

Project

1

1

Commission

* *

Member

*

*

Resolution

Association entity

Fig. 3. Class Diagram for Documents Class Diagram for Documents at “Data Model Conceptual Level” within a Case Study.

In this representation, data models consist of collections (of data) so that each collection has a designation. The

collections are sets of data or multi-set (bag) of data or data types with well-defined properties and structure; the most

Formal approach to modeling of modern Information Systems

International Journal of Information Systems and Project Management, Vol. 4, No. 4, 2016, 69-89

◄ 73 ►

typical representation of data model is either relational data model or object-relational data model (However, there are

several concurrent representation and implementation technology). The extension of data types as occurrences compose

subsets of dataset that can be deduced from document structures. The collections include identified data that are

significant as their modifications over time are linked to documents (but that is not the same as the logging of database

activities, in opposite it depicts the impact of activities related to document manipulation).

3.1 The Document-centric Modeling

The proposed approach is unlike to the traditional database modeling methods and the recent fashionable artifact-

centered approaches. The document-centric modeling should exist with a strong correspondence to the Enterprise

Architecture of the given organization, with a definite emphasis on the business processes. The structure of documents

within an organization can be mapped onto the organigram and structure of business processes through homomorphism

(Fig. 4).

ActionState1 {OR}

ActionState2

ActionState3

«precondition»

{}

ActionState5

ActionState6

ActionState7

ActionState8

Document Relevant for the Business Process : Actual

Fig. 4. Business Process Model - A Case.

The representation of both business processes and organization structures appear within Business Process

Owner/Manager perspective of Enterprise Architecture [7]. The needs for flexible IS lead to tendencies that can be

formulated as a customer-centric paradigm. The customer-centric paradigm can be partly captured by a highly flexible

document structure at the User Interface level. The documents should be adaptable to changes both in their structure and

in their related content. There is correlation between the software architecture and the project structure of the software

development [23]. The document model should mirror the life cycle of documents, the manipulation, the events, and

effects by business processes. The modifications that affect the data included in documents should be traced, i.e.

creating, modifying data items, establishing new relationship; the precedence analyses are an available option for

tracking the impacts [20].

The chain of events and processes can be monitored through roles/actors and their handling of identifiable data items

within documents. The human roles stimulate data processing activities that affects documents, consequently the data

items as well that are included in the documents. The document-subdocument structure (Fig. 1, Fig. 2, Fig. 3) is able to

represent both the organization and the information model at the same time. Whilst the data model is not structured as

set of sub-data models instead it displays rather uniform configuration [20] (Fig. 5).

Blokdijk’s model offers a structuring approach for perceiving Information Systems. The model’s major components are

(Fig. 5): (1) organizational model; (2) information model; (3) data model; (4) process model. The process model

provides the composition of business activities and it is strongly coupled to the control structure. However, the data

Formal approach to modeling of modern Information Systems

International Journal of Information Systems and Project Management, Vol. 4, No. 4, 2016, 69-89

◄ 74 ►

model is not an exact representation of the organization structure. For the reason that patterns of data model reflect the

relevant facts about the organization but it does not map the organization structures. The document and data model

requires a common representational method in which the services, and functions of documents, the coupled business

activities can be depicted in a uniform manner. Furthermore, the interrelationships between the data and document

model can be shown as much the same way as possible. There is logic of inheritance to identify data items within

documents. Within the document chain, data elements are inherited from the previous element of documents.

View: D
esig

ner

View: O
wner

View: B
usiness Planner

Vie
w: B

uild
er

Vie
w

:

Subcontra
cto

r

Vie
w

:

Funct
io

nin
g

O
rg

an
iz

at
io

n

W
h

a
t: D

a
ta

H
o

w
: F

u
n

c
tio

n
s

W
h

o
: O

rg
a

n
iz

a
tio

n

W
h

y
: S

tra
te

g
y

W
h

e
n

: E
v

e
n

ts
/S

c
h

e
d

u
le

 W
h

e
re

: N
e

tw
o

rk

Integration of

Organization

and

Information

systems

Name space of

Documents (XML) for

Reconciliation

Mutual mapping of

Control Information

between Business

Processes and

DocumentsArchitectural views

of Zachman s

framework and

TOGAF

Architectural

perspectives of

Zachman s

framework and

TOGAF

Discrete Time of Document Life Cycle

Organogram

Blokdijks

view points

Document model

Semi-structured,

Unstructured document

Interactions of documents and Models of Information

Architecture

Business Process

Model Workflows

Data Model

 Database

(stuctured, semi-

structured; unstructured)

Fig. 5. A Multi-dimensional model for interaction of Information Systems and Documents.

3.2 Types of Documents

The document model is composed of document types. The types of documents designate the state of their variables.

We define the concept of binding by this way: a free field within a document; or a free variable is set for a value, i.e.

valuated. The status and the type of documents can be inferred from the bindings; i.e. how many variables are already

set to specific values. A generic document is a hierarchy of classes of documents. Finalizing or finishing a document

instance within a hierarchy of a generic documents leads to that all free variables/fields are set to a certain value step-

by-step. The finalization of documents ensues from overarching business processes that can be linked to the flow of

documents. The documents flow can be represented by data flow, Event Process Chain or Business Process Modeling

Notation.

Formal approach to modeling of modern Information Systems

International Journal of Information Systems and Project Management, Vol. 4, No. 4, 2016, 69-89

◄ 75 ►

Evolution of Documents

Roles and Responsibilities

Scenes and Scenarios

Fig. 6. Representation the Life of Documents by Hypergraph.

The free-documents – like free tuples from tableau queries – can be perceived as documents that contain unbounded

variables. As the document evolves more and more variables valuated, finally the documents achieve a state in that the

documents cannot contain any unbounded variables. We can call documents in this state as ground-documents. The

parts of documents can be regarded a finalized one from the viewpoint of one of the system roles; however, the parts of

the documents may still contain some free variables that require further processing by some other system roles. The

external information is supplied by system roles out of the organization. i.e. outside of IS, the steps of the fulfillment

process and their sequences are defined by business rules of the organization Valuation of a free variable needs external

information what is supplied by system roles out of the organization, i.e. outside of Information Systems, the steps of

the fulfillment process and their sequences are defined by business rules of the organization. For that reason, we make

differences between the states of finalized and ground-document. However, the responsibility for recognizing the proper

data items relates to the currently valid system role (human or business process). The previously published figure (see

[2]) (Fig. 5) has been extended to designate the name space of document’s DBMS, emphasize the mutual mapping

between the information related to control and business processes, and to pinpoint to set of models that play a crucial

role in integration of enterprises and Information Systems.

A finalized document may contain free-variables and/or error signaling variables /fields that designate the necessity for

further processing by some certain roles. The defect resolution of documents happens typically by organizational roles,

i.e. outside of the automated Information Systems. In the case of algorithmic approach for error handling, the further

document processing requires an intensional treatment, and usage of intensional documents, i.e. generate document

instances based on business rules that are fulfilled by the automated Information Systems to create extensional

occurrences. A stable state of an instance of an overarching business process within an IS can be achieved in the case if

all documents that were involved in it are already ground-documents. The document handling finally results in ground-

documents, ground sub-documents and assembled documents through several stages of development of to-be-finalized

documents. The initial state is an uppermost documents and derived (intensional) documents. The intensional

Formal approach to modeling of modern Information Systems

International Journal of Information Systems and Project Management, Vol. 4, No. 4, 2016, 69-89

◄ 76 ►

documents may contain free variables at meta-data and data level at the same time. On finishing their processing, the

ground-documents build up a network (Fig. 6). To establish interdependencies among ground-documents may require

some extra information. The supplemental information may assist to finish building-up the network of documents.

3.3 Representation of Documents

The current standards for describing the structure of documents are the XML, DOM (Document Object Model), JSON

[15], [31]. The conceptual data model is either represented by entity-relationship or object-oriented modeling methods.

The interdependency between document model and data model can be represented by RDF.

To support enterprise architecture, the recent IT architectures (SOA, REST, etc.) offer procedures as orchestration and

choreography to create complex services along with documents. The documents may belong to various categories as

generic, intensional, to-be-finalized, and ground-document type. The architectures provide the opportunity to create

protective, security and safety mechanisms [5], [24].

The document handling finally results in ground-documents, ground sub-documents and assembled documents through

several stages of development of to-be-finalized documents. The initial state is an uppermost documents and derived

(intensional) documents. The intensional documents may contain free variables at meta-data and data level at the same

time. On finishing their processing, the ground-documents build up a network. To establish interdependencies among

ground-documents may require some extra information. The supplemental information may assist to finish building-up

the network of documents.

3.4 The proposed document model

A database-centric IS model that is based on an information theory approach [25] outlines a framework that describes

the input, output and query processing. Fig. 7 contains the IS model indicated by the dashed line; the previously

published version [2] was enhanced to express that the source code data outside of the system and the code generated by

the information system towards destination are communicated through a crust consisting of documents. In computerized

systems, interactive documents and Web services become visible on the source and the output side. Free documents

appear at the interface/façade level. The system roles (either human or automated system) perform variable valuation,

or binding at each single variable through simple tasks. The business activities consist of tasks; a task can be composed

of elementary tasks. An elementary task can be coupled to specific variables and its manipulation. The end-users who

typically use information can retrieve data through documents, e.g. querying and fetching data from database and then

processing the obtained responses.

The two sides of the model, the input and potential output data are separated by the document model in the Fig. 7.

Although the various possible states and instances of document types integrates both sides at the same time. The two

sides show the same behavior but provide different services. The twofold behavior is actually either querying or

alteration like.

In front of data model and its manifestation in the form of a database system, a new, document model should be placed

in. Beside the logical formulation of data retrieval and modification, the model should contain the description for

sequences of interaction among documents; moreover, they should deal with collection of documents.

We can make difference between documents as being static or dynamic. The structure of a dynamic document may

change as the response that is triggered by the system or system roles indicate it. The response may create instances of a

general dynamic document that results in a sequence of free documents. The free documents are gradually converted

into ground-documents starting from generic ones through intensional ones to be finalized and ground-documents. The

ground-documents do not include any free variables thereby the names of variables in the ground-documents can be

placed into the name-space of database.

Formal approach to modeling of modern Information Systems

International Journal of Information Systems and Project Management, Vol. 4, No. 4, 2016, 69-89

◄ 77 ►

The system of documents – generic, intensional, free-documents, to-be-finalized and ground-documents – can be

perceived as a meta-database. This meta-database encloses not only static structures, but it includes active component as

well that can be realized by web services. The active component incorporates the potential program code for

interactions among the system roles, documents etc. The active components encapsulate the codes for database

management too. The above-mentioned techniques can be integrated into a unified framework (Fig. 3, Fig. 4).

Although, there is a lack for a comprehensive and not too complex scheme that combines all elements required for

modeling Information Systems from a document-centric viewpoint and it is computable. Our proposal takes a step into

the direction that both theoretic modeling and engineering viewpoint can be vindicated in a unified approach. The

hypergraph as an appropriate mathematical tool may serve as a unifying approach to reconcile the before-mentioned

heterogeneous model into a unified schema.

Database

S
o

u
rc

e
s

(D
a

ta
/

D
o

c
u

m
e

n
t)

End-users

N
e

w
 m

e
s
s
a

g
e

(D
a

ta
 /

D
o

c
u

m
e

n
t)

Query in

message

In
te

rf
a

c
e

/F
a

ç
a

d
e

R
e

s
p

o
n

s
e

in
te

rf
a

c
e

Q
u

e
ry

 i
n

te
rf

a
c
e

.

.

.

..

Interactive documents

Web service framework

T
ra

n
s
fo

rm
a

ti
o

n
 f
o

r

in
s
e

rt
in

g

Response in

message

S1

S2

Sn

R1

R2

Rk.

D
o

c
u

m
e

n
ts

 f
ill

e
d

-i
n

 f
o

r

p
ro

v
is

io
n

 o
f
re

s
p

o
n

s
e

D
o

c
u

m
e

n
ts

 t
o

-b
e

-f
ill

e
d

-i
n

D
o

c
u

m
e

n
ts

 t
o

-b
e
-f

ill
e

d
-i
n

fo
r

re
tr

ie
v
a

l

Fig. 7. Information Systems’ model in a document-centric approach.

4. Formal mathematical background

Hypergraphs. As we have outlined previously, the problem to be solved can be described as a set of complex,

heterogeneous relationships. The basic components that appear as constituent participate sometimes in hierarchical,

sometimes rather network-like relationships that are different to each other. The hypergraphs as mathematical structure

seems to be apt to representing the interrelationships among the models, views, viewpoints, perspectives, and the

overarching documents and business processes [7].

We start with the basic definitions of hypergraphs in order to employ for depicting the before-mentioned complex

relationships.

Definition 1. A hypergraph H is a pair (V, E) of a finite set V = {v1,..., vn} and a set E of nonempty subsets of V. The

elements of V are called vertices; the elements of E are called edges [22].

Definition 2. Generalized or extended hypergraph. The notion of hypergraph may be extended so that the hyperedges

can be represented – in certain cases – as vertices, i.e. a hyperedge e may consist of both vertices and hyperedges as

well. The hyperedges that are contained within the hyperedge e should be different from e [22].

Formal approach to modeling of modern Information Systems

International Journal of Information Systems and Project Management, Vol. 4, No. 4, 2016, 69-89

◄ 78 ►

The hypergraphs as a tool for describing Information Systems from various viewpoints yields a formal method to

analyze the system, and to check the conformance, compliance and consistency of the set of models. The representation

created by the above-mentioned way can be leveraged for design and operational purposes as well. Considering a

document model, a particular document type hierarchy can be perceived as a “hierarchy” of hyperedges. The free

variables or placeholders to be filled-in may occur as ultimate vertices within hyperedges that represents the instance of

extension of particular document type. In a document subpart hierarchy, a specific subpart of document may be denoted

by a vertex within a particular hyperedge that describes this document that contains the subpart, although that subpart as

a vertex may include a document type hierarchy that can be depicted by a hyperedge.

Definition 3. A directed hypergraph is an ordered pair

  I}:ie{EV;H
i
 (1)

Where V is a finite set of vertices end E is a set of hyperarcs (directed hyperedge) with finite index set I. Every

hyperarc ie can be perceived as an ordered pair

    





  

iiiii
e,ie;i,eee (2)

role1

documentn

document1

e2=responsibility

e1=Activity Modell1



1
e 

1
e



3
e



2
e

e3=organization unit



3
e

e4=organization functions



2
e

Planning and

Design of

Documents

Documents

fulfillment

Documents

finalization

Issuing and

Archiving

Position

 Activity1

 Activityn

Documents

creation

Documents

revision

Fig. 8. Example for Directed Hypergraph Representing a Sample of Essential Relationships.

Where Ve
i


 is the set of vertices of


ie and Vei 


 is the set of vertices


ie . The elements of


ie (hyperedges

and/or vertices) are called tail of ie , while elements of


ie are called head [22]. We may use as shorthand notation for

ordered pairs, e.g. a vertex and a directed hyperedge as ordered pair <vi, ej>.

The underlying graph representation is based on the hypergraphs and directed hypergraphs. The potential

implementations of hypergraphs in a hypergraph database make allowance for linking attributes to vertices, even more

to hyperedges. The target domain, namely documents and model of Information Systems within organizations, contains

complex n-ary relationships. The hypergraph provides the opportunity to depict recursive construction, to describe

Formal approach to modeling of modern Information Systems

International Journal of Information Systems and Project Management, Vol. 4, No. 4, 2016, 69-89

◄ 79 ►

logical relations, to store compound structures along with their values [26], [27], [28]. As an illustration of the basic

concepts of directed hypergraph, an example can be seen in Fig. 8. that makes sense of the representation for the

domain by hypergraph. The essential characteristics is that vertices contain composite constituents that are themselves

may be graphs; generalized hyperedge may contain other hyperedges but not itself and vertices.

Definition 4. Architecture Describing Hypergraph is a generalized hypergraph with undirected and directed

hyperedges. It can be designated as a tuple Attr,E,E,E,A,V
DU

:

 V is the set of vertices;

 A is the set of arcs, i.e. directed edges, an arc is an ordered pair j,i , where Vj,i  ;

 E is the set of hyperedges;

 EU is the set of the undirected hyperedges, because of the properties of generalized hypergraphs, a hyperedge e is

 either Ve,e  , (basic hyperedge),

 or a bag of hyperedges;

 EU is divided up at a meta-level into partitions:

─ EC consists of the configuration hyperedges. Each hi  EC is a simple hyperedge, i.e. containing only vertices, not

complex structures and other hyperedges. All hi  EC can be labeled unambiguously. The configuration

hyperedges manifests the structure of “things”, the vertices within a hyperedge are the properties of the specific

“thing”. The properties can be perceived as variables or attributes (depending on the context) that can be valuated

thereby they linked to an individual value (vertex in D (see Definition 6.)) or a set of values, e.g. to a grouping

hyperedge;

─ EE is composed of the extensional hyperedges. The extensional hyperedges can represent collections of data, the

instances of generic documents. For example, the collections of data can be built up by tuples of data items, the

instances of documents can be composed of certain bags of free variables that are contained in the particular

documents’ object structure. In these examples, the distinct elements, the vertices of these hyperedges can be

considered as constituents of extensional hyperedges;

─ EI comprises the intensional hyperedges. The intensional hyperedges show the logical and rule-based

interrelationships among the vertices (models within the architecture), moreover configuration hyperedges;

─ EG is made up of grouping hyperedges that embody various structuring principles on components, as e.g. view,

viewpoint and perspectives etc. in architecture describing approaches; they symbolize interrelationships between

certain models and pieces or parts of documents as e.g. business activity models, documents and responsibilities

of roles within an organization unit. The hyperedge h  EG can be utilized for sorting the vertices (representing

either documents or models) into organizational-related, document-related and activity related relationships.

 ED is a set of hyperarcs, i.e. directed hyperedges; the hyperarc
i
e  ED can be as it follows (see Definition 3):

─
i
e =< vj, h >=    








  he,ie;i,vee iijii where vj  V, and h  EG;

─
i
e =< vj, h >=    








  he,ie;i,vee iijii where vj  V, and h  EC;

─
i
e =< vj, h >=    








  he,ie;i,vee iijii where vj  V, and h  EE;

Formal approach to modeling of modern Information Systems

International Journal of Information Systems and Project Management, Vol. 4, No. 4, 2016, 69-89

◄ 80 ►

─ there does not exist two hyperarcs ie =< vj, h > and ke =< vl, h

 > that either or

E
hh

C
hh ,, EE 


, i.e.

every vertex vj  V is linked, at most, to one configuration hyperedge (EC) and at most to one extensional

hyperedge (EE). These conditions can be interpreted the following way: a vertex may belong to a configuration

structure (either document or model), or it may belong to an extension that represents the instantiation of either a

document or a model.

Description Logics. One of the most common approaches of formalization is the use of some mathematical-logical

language. The Description Logics belong to mathematical logics, and their purpose is formal knowledge representation

[29]. Compared to propositional calculus (or propositional logic), the expressiveness of description logic is higher, and

it has a more efficient algorithm for the decision problem than the first-order predicate logic. On the other hand, the

network like knowledge representation - where the elements of the network are vertices and links are relationships as

e.g. the semantic net- work - can be related to the theory of hypergraphs. In both case, vertices can be used to define

concepts, and links can be used to characterize the relationships among them. Bearing this in mind, it is obvious to

apply description logic on a system based on the mathematical background of hypergraphs.

The knowledge representation systems based on Description Logics contains two main components: the TBox, and the

ABox. The TBox introduces the terminology, i.e., the basic concepts, which denote sets of individuals (atomic and

complex), and roles, which define binary relations between individuals. These are forming the vocabulary of an

application domain. The ABox contains assertions among named individuals and the vocabulary.

There are many variations of the Description Logics (originated from the varieties of description languages) and there is

an informal convention, where their name indicates which operators are allowed. For example, a basic logical language

is the Attributive Language – AL, which allows: atomic negation; concept intersection; limited existential

quantification; and universal restriction. This can be extended with other operators, as e.g. concept union (U), full

existential qualification (E), cardinality restriction (N), or complex concept negation (C). The description language lays

the groundwork for the description logic [29].

To illustrate Description Logic in document centric environment, we show some examples below:

 With Parameter ⊑ (Free Variable ⊔ Bound Variable) notation we describe, that a document parameter can be either

free or bound variable.

 Parameter ⊑ ∃is_part_of. (Document Fragment) means, that a document fragment consists of parameters, and

Document Fragment. ∃ is_derived. (Free Document) means, that the document fragments are derived from

unprocessed free documents.

 State.P ⊑ ∃has_successor. (Action State.Q) means, that Q action-state follows the P state.

 The following line describe, that an action-state needs free variables to work with: Action State ⊑

∃has_free_variables (Document); has_free_variables ≡ ≥ 1 is_free_variable ⊓ is_free_parameter.Parameter

The output of a well-designed formalization of an information system that is depicted by description logics and – at the

same time – represented by a hypergraph exists in machine-readable format thereby this formalization has the

opportunity to use various frameworks and tools to evaluate the model. With this it is possible to effectively optimize

the information system even in the early model-development phase.

5. Formalized Document Centric Approach

In the case of a particular organization, we can imagine that there is a comprehensive document that is a representation,

in conceptual sense, all potential documents. This overarching document is composed of generic document types.

Generic document types are hierarchical structures that can be described by configuration hyperedges that reflect the

composition of documents. There are hierarchical relations among the members of a generic document. The hierarchical

Formal approach to modeling of modern Information Systems

International Journal of Information Systems and Project Management, Vol. 4, No. 4, 2016, 69-89

◄ 81 ►

relationships can be described by configuration hyperedges; the instances of a generic document member can be

perceived as extensions and can be represented by extensional hyperedges.

There is an approach that recognizes documents as “a unit of business information exchanged in a business

transaction’’, i.e. as a medium for message exchange between business partners [30]. Business can be perceived as a

general notion in this context, namely the entirety of commercial and non-profit companies, public services and public

administration as branches of economy and societal life use documents, and decisively electronic documents. Because

of proliferation of computer literacy, the users’ requirements stated more frequently in the form of documents as e.g.

word processors, calculation tables, etc. There are several sectors of IT applications where documents in various

conceptual forms play important roles. A document can be described technically by XML schema, and additional or

contextual information may be supplied by DTD, XLink, XInclude, XSL/XSLT. The Document Object Model (DOM)

yields an object-centric representation for documents [31].

Fig. 9. Interrelationships of Documents Represented by Hyperedges.

In our approach, we emphasize the existence of overarching document as a projection of the embracing organization.

The parts and subparts of documents and document hierarchies are the subject of operation that initiated by business

processes, activities and tasks. The responsibilities for executing the operation linked to roles within the organization.

The documents utilize the underlying collections of data and thereby the serve as media to facilitate the data flow within

organization.

A generic document type GDT is a hierarchy of document types DTH. The elements of DTH can belong to a

configuration hyperedge eCi as vertices. The generalized hypergraphs allow that the vertices may appear as complex

structures, as hyperedges. Therefore, a vertex can be a hyperedge that itself a configuration hyperedge that contains a

hierarchy of document types. Thereby, the representation makes possible for a recursive definition of document types

and gathering them into a generic document type.

The direction of the hyperarc shows whether a document plays the input or output role in a particular context (Fig. 9).

The definition of the hyperarc is given above (see formula (2)) permits the differentiation between the information

Formal approach to modeling of modern Information Systems

International Journal of Information Systems and Project Management, Vol. 4, No. 4, 2016, 69-89

◄ 82 ►

represented by the head and tail of a hyperarc, and the information that are represented in the form of vertices that are

contained within the heads and the tails [22].

Definition 5. The Document Subhypergraph consists of:

 A finite set of documents that are represented by vertices DOC= {doc1, …, docn};

 The documents contain variables, the variables belong to certain attribute type of Attr= {T1, …, Tn} that consist of

the attribute types;

 The finite set of domains is DOMSET= {D1….Dk} that contains the domain of each single type, Ti;

 The relationship between a generic document type GDT hierarchy and its constituents document types belonging to a

DTH can be described by hyperarcs representing is-a relationships; the hierarchy is a mapping of super type-subtype

relationships between document types. The relationships can be deduced from the variables, their attributes and the

types of attributes.

 The relationship between a document doci and a document type DT can be described by a hyperarc representing the

instance-of relationship.

The instances of a document type can be linked to the particular document type through an extension hyperedge. The

document instance contains typically free-variables; thus these document instances can be called as free-documents.

Free documents as document instances and extensions of document types are the subject of manipulation by business

processes. A value for a variable can be a new fact or a new free-document of appropriate types. The concept of generic

document type offers possibilities for derivation of new document types from other document types that can be regarded

as templates. The derivation rules can be formalized by logical statement that may create either a slightly different

document type according to the structure of documents and then an instance of it or operate during the lifecycle of an

instance of the document types. A document type may contain business rules in the form of predicates, data retrieving

and calculation rules. Both cases demand operators that create documents through intension, i.e. logical inferences. To

depict these relationships, the intensional hyperedges can be used. The common characteristics in both cases is that

neither the creation of a new document type and its instance nor a document instance with more valuated variables

require human interaction through business processes and activities, they should be fully automated. A fully automated

business process may be described in BPEL (Business Process Execution Language), but the full automation raises

several issues that should be handled if there is no direct human, external interaction at a certain point of time during the

execution. During their lifecycles, the free variables of free-documents are valuated, i.e. a variable is set for a value. A

document is modified during processing by business activities in the context of actual responsibilities (organization

units, roles, actors). A document may achieve the finalized status but the policy and rules of organizations permits

further processing in some cases. When a document is in such a status that it cannot be modified in any case then this

document can be called ground document. This situation is typical in public administration as it manufactures document

during the business process and ships a ground document to the customer. The time is important factor of life cycle of

documents. The interplay between business activities and documents moves through the time dimension.

6. Information Architecture and Documents

As we have seen previously, the documents are strongly coupled to their embracing organization context, even defining

the appropriate document types request referencing to the related activities. Beside the essential documents, IS can be

described by various models that are ordered into a reasonable structure by Enterprise Architecture approach. To

describe the document manipulation requires operators so that we can extend the definition:

Definition 6. Architecture Describing Hypergraph is a generalized hypergraph that can be extended by some functions

and operations:

Formal approach to modeling of modern Information Systems

International Journal of Information Systems and Project Management, Vol. 4, No. 4, 2016, 69-89

◄ 83 ►


nodenode LVlabel : ; where L is a set of labels, it is a vertex labeling function;


edgeedge LElabel : ; where L is a set of labels, it is an edge labeling function;

 ;VEsourceE :

 ;VEtarget E : these functions return the source and target vertices of an edge E;

 ;VAttrattr : attribute assignment function;

 ;VAttrsource Attr : The vertex that owns the attribute is returned;

 ;DAttrtarget Attr : The data values of attributes are yielded; D represents the set of data.

 D can be grasped (efficiency of the representation is left out of the investigation) again as vertices within the

hypergraph and it can be interpreted as variables.

 Over D as a set of variables, set of operations (OP) can be defined that can be used to describe constraints and rules

within formulas.

Table 1. Representation of Information Systems by Hypergraph.

Concept of Information System Theory Representation of concept in the domain of hypergraph theory

Information System A result of a system-development exercise that created a set of design artifacts. The set of elements

and relationships among them can be represented as vertices and edges within the graph. We can

map the model elements to a hypergraph that consists of vertices and hyperedges.

Node/vertex in a hypergraph Each vertex corresponds to an element within an Information Systems, e.g. documents, elements of

documents (constituting a tree structure), business processes, workflows, layers of workflows, web

services, networks of web services, etc. The documents may represent one of the aspects for the

information flow both inwards and outwards.

Edge in a hypergraph Edge is a specific hyperedge with cardinality equal to two. Edge denotes binary relationships

between two vertices, as e.g. free documents is processed by a certain Web service, a generic

document is the ancestor of an intensional documents, a free-document resulted in a ground-

document after binding, valuating of variables, etc.

Hyperedge A hyperedge represents a relationship among a subset of vertices as e.g. Web services belonging to

a specific workflow, business process containing workflows, etc.

System graph A hypergraph that includes a disjoint vertex for modeling the environment of the system, plus all the

vertices and hyperedges of the WIS.

Sub-system A subset of vertices and their incident hyperedges. A vertex is incident to a hyperedge if the

hyperedge contains the vertex. A sub-system may be composed of documents, Web services and

related entities out of data model, etc.

Interconnecting sub-systems hyperedges

graph of the generalized hypergraph

A graph consisting of all the vertices in a sub-system and all hyperedges connecting together

subsystems.

Beside the documents, the various models that follow some architectural description and system design style are

essential constituents of IS (Table 1). The hypergraph representation gives the chance to represent the complex

interactions and interrelationships among models and documents that drives the behavior of systems. The object-

oriented paradigm and UML visual language proliferated as specification language for models. For the uniform

discussion, we presume that all of the models in line with the UML modeling and visual language standard, moreover

their representations pursue the object-oriented, meta-data structure codified into standard. The models’ descriptions

appear usually in semi-structured document forms as XML and/or JSON that offers a chance for uniform treatment of

documents and models of Information Systems. As structuring principal for models of IS, we can use Zachman

ontology and/or TOGAF (Fig. 5) [6], [7]. A model is a description of specific properties of an IS and it represents an

Formal approach to modeling of modern Information Systems

International Journal of Information Systems and Project Management, Vol. 4, No. 4, 2016, 69-89

◄ 84 ►

artifact of views, viewpoints and perspectives [7]; or it can be perceived as an architectural building block of the system

[6]. The set of relations among models and the internal structure of models plays essential role.

The models can be arranged into three meta-groups namely organization, documents and activities related models. For

modeling, the relationships and interactions among these three meta-groups and the underlying collections of data are

significant. The models, documents and concepts of IS and a vertex representing the external environment compose a

hypergraph that embraces all important parts of the application domain that may be called as System Hypergraph. The

specific models can be considered as complex structures, and at the first cut, they can be represented as vertices

containing the information about the model, possibly in the form of a hypergraph, because of generalized hypergraph

permits to set up a hierarchy. We may structure the overarching hypergraph several sub-hypergraphs as documents,

organization and its units, underlying data collections, business processes and their constituents.

We can exploit the flexibility of hypergraphs to describe relationships. A hyperedge, and a hyperarc (directed

hyperedge) can depict various relationships. In the case of documents, a hyperarc can express the input and output roles

of documents that they may fulfil within activities of business processes. The document may be attached to organization

units and actors through a responsibility hyperedge (labelled directed hyperedge). The variables of documents may be

connected to data vertices of D that is organized into reasonable partitions that are represented by vertices contained in

hyperedges that can be mutually mapped to specific data collections. These sub-hypergraphs may be called Sub-system

Hypergraphs. Between the models, a refinement relation can be identified within an architectural perspective (Fig. 5)

and represented by a hyperarc (directed hyperedge) is-a-refinement. The documents and their structures can be

described by documents model.

Definition 7. Models of IS represented in the Architecture Describing Hypergraph are:

 The set of vertices is divided up into two basic subsets VDoc and VModel;

 VDoc {OGDT} where OGDT signifies the overarching generic document, that is the super type of all other

document types and their instances;

 VModel {EA, {external_evironment}}, where EA designates the overall Enterprise Architecture consisting of models,

the external_evironment refers to the outside world that is typically the source of stimulus that is generated by either

humans or any other systems;

 VConfiguration =  hi where hi  EC, and  hi =  where hi  EC.

The expressions articulate the fact that the configuration hyperedges represents the structure of artifacts of models and

documents in the form of structural constituents as vertices.

 The set of arcs (directed edges of graphs) A is partitioned into subsets ADoc_Target, AModel_Target, AInteraction, where

ADoc_Target  VConfiguration × VDoc, AModel_Target  VConfiguration × VModel.

The directed edges, the arcs map a complex structure, a configuration of elements (vertices) to a vertex that represents

either a document or a model.

 HAInteraction  VModel × VDoc, HAInteraction  ED;

The interaction between certain models and specific documents can be expressed by a hyperedge h  HAInteraction.

 EC can be partitioned into two subsets EConfiguration_Document and EConfiguration_Model.

Formal approach to modeling of modern Information Systems

International Journal of Information Systems and Project Management, Vol. 4, No. 4, 2016, 69-89

◄ 85 ►

The hyperedges hi, cd  EConfiguration_Document, hj, cd  EConfiguration_Model represent an inheritance structure. The inheritance

structure conforms to the object-oriented paradigm, i.e. the configuration of documents and models inherit the attributes

of super-classes, and may have extra attributes as well. Each attribute of a certain configuration can be represented by a

vertex of the hyperedge. An attribute linked to a vertex either in VModel or in VDoc, its value represented by a link to a d 

D when it is valuated. If the attribute is multi-valued, then the attribute is connected to hyperedge h  Power (D) (the

power set of D).

 The set of extensional hyperedges EE is split into two subsets ESuperclass and EExtension

 The hyperarc h  ESuperclass, if h  EE, (h set of vertices)

 Either h  VDoc and OGDT  h

 or h  VModel and EA  h.

 Given a vertex vi h and h’  ESuperclass, then either valid that < vi, h’ >  ESuper_doc, then h’  h

 Or < vi, h’ >  ESuper_model. then h’  h

 Notation: ESuper_doc= VDoc \ {OGDT}) × ESuperclass  ED;

 Notation: ESuper_model= ((VModel \ {EA, {external_evironment}}) × ESuperclass  ED).

The hyperedges h  ESuperclass provide the association between a class of objects (models or documents) and its super-

classes in compliance to the object-oriented paradigm. For the reason for our modeling approach, we make distinction

between the two top super-classes, namely OGDT, the overarching generic document, EA the overall Enterprise

Architecture. The conditions above specify the transitivity of is-a relationship for the relation between class and its

super-classes.

 The instances of models can be represented by EInstance_model  VModel × EE (extensional);

 The instances of documents can be represented by EInstance_doc  VDoc × EE;

 h  EE, (h set of vertices) is h EAttribute_Set if h D. The following statement is valid as well:  hi = D, hi

EAttribute_Set. The hyperarcs h EAttribute_Set are used to represent the attributes domains, and the associated values;

 The hyperarc h  EExtension, if h  EE, (h set of vertices) and

 Given a vertex vi h  VDoc and h  EExtension, then < vi, h >  EInstance_doc, < vi, h’ > ESuper_doc, then for each n  h

and each dt  h’  ha  EE (hyperarc) where < dt, ha >  EInstance_doc;

 Or

 Given a vertex vi h  VModel and h  EExtension, then < vi, h >  EInstance_model, < vi, h’ >  ESuper_model, then for each

n  h and each dt  h’  ha  EE (hyperarc) where < dt , ha >  EInstance_model.

A hyperedge h  EExtension represents an extension for models and documents respectively as well. The above described

statement formalizes the transitivity of instance-of relationship.

 The intensional hyperarc h  EI, < d, h>  EIntension if EIntension  VDoc × EI, d  VDoc, h  EConfiguration_Document, h 

VDoc; the intensional hyperarc defines the hierarchical relationship between templates, rule-based document types and

extensional document types that are instantiated.

 The set of hyperarcs (directed hyperedges) in ED can be arranged into several subsets according to the notion of

Enterprise Architecture:

 The hyperarc h EView  EG, h  VModel, represents a stakeholder’s view that puts together models that describe

the specific viewpoint of a role within organization. The hyperarc may be defined as <ri, mj = (ei
-; j  I)>, where ri

represents a vertex within an organizational model and it is mapped to a role of organization; mj  EInstance_model, or

mj  EConfiguration_Model before instantiation of models;

Formal approach to modeling of modern Information Systems

International Journal of Information Systems and Project Management, Vol. 4, No. 4, 2016, 69-89

◄ 86 ►

 The hyperarc h EPerspective  EG, h  Powerset (VModel), embodies a hierarchy of models according to a

refinement hierarchy;

 The hyperarc h EDoc_Life_cycle  EG, <d, h>  EInstance_doc× EInstance_model, d  VDoc, that depicts the life cycle of

document through the interactions with models.

7. Conclusion

We have described issues and problems of modeling IS. The recent evolution of technologies at user interface level and

database handling raised questions that can be solved through new modeling approaches taking into account of

ubiquitous documents as data holder.

Using of successful methods for single particular views, viewpoints and models, a framework for unifying the various

approaches is outlined. To provide a theoretically sound but reasonable complex and comprehensive approach for

description and research of IS a hypergraph based method is proposed (Table 1). The direction of future research is to

exploit the hypergraph as mathematical model to formalize the IS’ model from a document centric view.

In this paper we proposed an Architecture Describing Hypergraph as representation for Enterprise Architectures and

related Documents. The suggested descriptive method takes advantages from the basic properties of generalized

hypergraphs, i.e. unequivocal representation of complex relationships; moreover, there are some distinguished features:

 Uniform treatment of both intensional and extensional aspects of documents and models within Enterprise

Architecture;

 Direct depiction of hierarchical relationships through instance-of, sub-class-of, super-class-of relationships.

The outlined approach can also be considered as a formal background to analyze and design IS. The documents play

important roles in Information Systems in the time of analysis, design, specification and operation with strong coupling

to roles of organizations. The unified framework provides an opportunity for uniform handling of models and

documents on a formal foundation.

The hypergraph–based approach offers the chance to apply further mathematical tools for assistance in the design,

verification and validation to maintain the integrity and consistency of IS.

References

[1] G. Joeris, ”Cooperative and integrated workflow and document management for engineering applications,”

In Database and Expert Systems Applications, Toulouse, France, 1997, pp. 68-73.

[2] B. Molnár and A. Benczúr, “Facet of Modeling Web Information Systems from a Document-Centric View,”

International Journal of Web Portals (IJWP), vol. 5, no. 4, pp. 57-70, 2013.

[3] B. Molnár, A. Benczúr and Á. Tarcsi. “Formal Approach to a Web Information System Based on Story Algebra,”

Singidunum Journal of Applied Sciences: Economy Management Tourism Information Technology and Law vol. 9, no.

2, pp. 63-73, 2012.

[4] T. Wewers and C., Wargitsch, “Four dimensions of interorganizational, document-oriented workflow: a case study

of the approval of hazardous-waste disposal,” In: System Sciences, The 3lst Hawaii International Conference, Hawaii,

USA, 1998, vol. 4, pp. 332–341.

[5] OASIS, “A reference model for service-oriented architecture,” White Paper, Service-Oriented Architecture

Reference Model Technical Committee, Organization for the Advancement of Structured Information Standards,

Billerica, MA, February, 2006.

Formal approach to modeling of modern Information Systems

International Journal of Information Systems and Project Management, Vol. 4, No. 4, 2016, 69-89

◄ 87 ►

[6] Open Group 2010, “TOGAF: The Open Group Architecture Framework, TOGAF® Version 9,” Available

http://www.opengroup.org/togaf/

[7] J.A. Zachman, “A Framework for Information Systems Architecture,” IBM Systems Journal Volume, vol. 26, no. 3,

pp. 276--292, 1987.

[8] K. Bhattacharya, C. Gerede, R. Hull, R. Liu and J. Su, “Towards Formal Analysis of Artifact-Centric Business

Process Models,” in BPM 2007, LNCS, vol. 4714, G. Alonso, P. Dadam, M. Rosemann, Eds., Heidelberg, Germany:

Springer, 2007, pp. 288–304.

[9] S. Yongchareon and C. Liu, “A Process View Framework for Artifact-Centric Business Processes,” In OTM 2010.

LNCS, vol. 6426. R. Meersman, T.S. Dillon, P. Herrero, Eds., Heidelberg, Germany: Springer, 2010, pp. 26–43.

[10] R. Hull, “Artifact-Centric Business Process Models: Brief Survey of Research Results and Challenges,” in On the

Move to Meaningful Internet Systems: OTM 2008, R. Meersman, Z. Tari, Eds., Berlin, Heidelberg, Germany: Springer,

2008, pp. 1152-1163.

[11] R. Hull, "Data-Centricity and Services Interoperation" in International Conference on Service-Oriented

Computing, B. Samik, P. Cesare, Z. Liang, F. Xiang, Eds., Berlin, Heidelberg, Germany: Springer, 2013, pp. 1-8.

[12] W3C 2001, “Web Services Description Language (WSDL) 1.1.” Available: http://www.w3.org/TR/wsdl

[13] M. Bernauer and M. Schrefl, “Self-maintaining web pages: from theory to practice,” Data & Knowledge

Engineering, vol. 48, pp. 39-73, 2004.

[14] B. Chidlovskii, “Schema extraction from XML collections,” In The 2nd ACM/IEEE-CS joint conference on Digital

libraries, Portland, Oregon, USA, 2002, pp. 291-292.

[15] C.-K. Nama, G.-S., Jang and J.-H. Ba, “An XML-based active document for intelligent web applications,” Expert

Systems with Applications, vol. 25, pp. 165-176, 2003.

[16] B. Daum, Modeling business objects with XML schema, San Francisco, USA: Morgan Kaufmann, 2003

[17] A. Gábor, A. Kő, I. Szabó, K. Ternai and K. Varga, “Compliance Check in Semantic Business Process

Management,” in On the Move to Meaningful Internet Systems: OTM 2013 Workshops, Graz, Austria, 2013, pp. 353-

362.

[18] A. Kő and K. Ternai, “A Development Method for Ontology Based Business Processes,” in eChallenges e-2011

Conference, Florence, Italy, 2011.

[19] B. Molnár, Z. Máriás, Z. Suhajda and I. Fekete, “Amnis-Design and Implementation of an Adaptive Workflow

Management System,” in 9th International Symposium on Applied Informatics and Related Areas - AIS2014,

Székesfehérvár, Hungary, 2014.

[20] A. Blokdijk and P. Blokdijk, Planning and Design of Information Systems, London, UK: Academic Press, 1987.

[21] N.P. Suh, Axiomatic Design: Advantages and Applications, New York, USA: Oxford University Press, 2001.

[22] A. Bretto, Hypergraph Theory: An Introduction. Cham, Switzerland: Springer International Publishing, 2013

[23] J. D. Herbsleb and R. E. Grinter, “Architectures, Coordination, and Distance: Conway's Law and Beyond,” IEEE

Software, vol. 5. no 16, September, 1999, Available: http://dx.doi.org/10.1109/52.795103

[24] J. Webber, S. Parastatidis and I. Robinson, REST in Practice: Hypermedia and Systems, Sebastopol, CA, USA:

O'Reilly Media, Inc, 2010.

[25] A. Benczúr, “The Evolution of Human Communication and the Information Revolution – A Mathematical

Perspective,” Mathematical and Computer Modeling, vol. 38, pp. 691-708, 2003.

Formal approach to modeling of modern Information Systems

International Journal of Information Systems and Project Management, Vol. 4, No. 4, 2016, 69-89

◄ 88 ►

[26] G. Gallo, G. Longo, S. Pallottino and S. Nguyen, “Directed hypergraphs and applications,” Discrete applied

mathematics, vol. 42, no. 2, pp. 177-201, 1993.

[27] G., Ausiello, P. G. Franciosa and D. Frigioni, “Directed hypergraphs: Problems, algorithmic results, and a novel

decremental approach,” in Theoretical Computer Science, 7th Italian Conference, ICTCS 2001, Torino, Italy, 2001, pp.

312-328.

[28] B. Iordanov, “Hypergraphdb: a generalized graph database,” in Web-Age Information Management, pp. 25-36,

Springer Berlin Heidelberg 2010.

[29] F. Baader, The description logic handbook: theory, implementation, and applications, Cambridge, UK: Cambridge

University Press, 2003.

[30] IDA, IDA e-procurement protocol XML schemas initiative. IDA working document. 2004.

[31] J. Marini, Document Object Model: Processing Structured Documents, New York, NY, USA: McGraw-Hill, Inc.,

2002.

[32] Y. Baghdadi, “A business model for deploying Web services: A data-centric approach based on factual

dependencies,” Information Systems and e-Business Management, vol. 3, no. 2, pp. 151-173, 2005.

Formal approach to modeling of modern Information Systems

International Journal of Information Systems and Project Management, Vol. 4, No. 4, 2016, 69-89

◄ 89 ►

Biographical notes

Bálint Molnár

He is Associate Professor (Dr. habil., PhD in Technical Informatics) at Eötvös Loránd University of

Budapest, he teaches: Methodologies of Information System Development, ERP and Integrated

Systems, Web technologies for Enterprise Information Systems, Database Management Systems,

Theoretical Background of Information Management, Enterprise Architecture and Security

Architectures. He is Associate Professor at Corvinus University of Economic Sciences, he teaches:

Development of Information Systems, Project management, Knowledge-based systems development.

His research area: Information System Modeling, ERP systems, Business Process Modeling,

Semantic Web, Enterprise Architectures, SOA. His research interest covers topics that were before-

mentioned as teaching subjects. He has published several scientific and professional papers and been

engaged as a consultant and project manager at the Hungarian Public Administration. He is a

member of the editorial board of Journal of Information Technology & Politics, The Electronic

Journal of Knowledge Management (EJKM), and Singidunum Journal of Applied Sciences.

www.shortbio.net/molnarba@inf.elte.hu

András Benczúr

He is Professor Emeritus at Eötvös Loránd University of Budapest. He teaches Database

Management Systems and its theoretical and formal backgrounds. His research interest covers the

modern Data and Document Management Systems, Big Data, Cloud, Modeling of Information

Systems. He has published several scientific and professional papers in Mathematics and Informatics.

He is Doctor of Sciences at the Hungarian Academy of Sciences.

www.shortbio.net/abenczur@inf.elte.hu

András Béleczki

He is PhD student at Eötvös Loránd University of Budapest. His research interest covers Information

Systems and Modeling, Big Data, Data Mining. He teaches Database Management Systems. He has

published his first paper in December, 2015 about formal modeling of document-centric Information

Systems.

www.shortbio.net/bearaai@inf.elte.hu

mailto:molnarba@inf.elte.hu
http://www.shortbio.net/bearaai@inf.elte.hu

