Cell factories for sustainable production of valuable chemicals – the pivotal role of Saccharomyces cerevisiae

Authors

  • Paulo César Silva CBMA - Center of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
  • Björn Johansson CBMA - Center of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal

DOI:

https://doi.org/10.21814/jus.5268

Keywords:

Green economy, cell factory, biotechnology, Saccharomyces cerevisiae

Abstract

The green economy aims to substitute polluting chemicals and processes with sustainable counterparts deriving from microbial cell factories that provide catalytic specificity and efficient conversions. In this manuscript, we explore how the bio-based production of chemicals enables the production of valuable molecules while reducing contemporary society's dependence on fossil fuels thereby alleviating part of the environmental burden. We discuss several emerging bio-based solutions and their impacts, with a particular focus on the potential of the yeast Saccharomyces cerevisiae in leading industrial microbial fermentation. Yeast remains a versatile, productive, and robust platform for producing metabolites and recombinant proteins.

References

J. Nielsen, C. B. Tillegreen and D. Petranovic, “Innovation trends in industrial biotechnology,” Trends Biotechnol., vol. 40, no. 10, pp. 1160–1172, Oct. 2022, doi: 10.1016/j.tibtech.2022.03.007.

M. M. Hanczyc, “Engineering Life: A Review of Synthetic Biology,” Artif. Life, vol. 26, no. 2, pp. 260–273, Apr. 2020, doi: 10.1162/artl_a_00318.

J. Nielsen and J. D. Keasling, “Engineering Cellular Metabolism,” Cell, vol. 164, no. 6, pp. 1185–1197, Mar. 2016, doi: 10.1016/j.cell.2016.02.004.

D. Romero-Suarez, J. D. Keasling, and M. K. Jensen, “Supplying plant natural products by yeast cell factories,” Current Opinion in Green and Sustainable Chemistry, vol. 33, p. 100567, Feb. 2022, doi: 10.1016/j.cogsc.2021.100567.

T. Perrot, J. Marc, E. Lezin, N. Papon, S. Besseau, and V. Courdavault, “Emerging trends in production of plant natural products and new-to-nature biopharmaceuticals in yeast,” Curr. Opin. Biotechnol., vol. 87, p. 103098, Mar. 2024, doi: 10.1016/j.copbio.2024.103098.

E. Barbier, “How is the Global Green New Deal going?,” Nature, vol. 464, no. 7290, pp. 832–833, Apr. 2010, doi: 10.1038/464832a.

P. Söderholm, “The green economy transition: the challenges of technological change for sustainability,” Sustainable Earth, vol. 3, no. 1, pp. 1–11, Jun. 2020, doi: 10.1186/s42055-020-00029-y.

United Nations, “Transforming our world: The 2030 agenda for sustainable development,” United Nations, Oct. 2015. Accessed: Apr. 27, 2023. [Online]. Available: https://sdgs.un.org/2030agenda

J. Lelieveld, K. Klingmüller, A. Pozzer, R. T. Burnett, A. Haines, and V. Ramanathan, “Effects of fossil fuel and total anthropogenic emission removal on public health and climate,” Proc. Natl. Acad. Sci. U. S. A., vol. 116, no. 15, pp. 7192–7197, Apr. 2019, doi: 10.1073/pnas.1819989116.

FAO, IFAD, UNICEF, WFP, and WHO, “The State of Food Security and Nutrition in the World 2022. Repurposing food and agricultural policies to make healthy diets more affordable,” Food and Agriculture Organization, 2022. doi: 10.4060/cc0639en.

C. Baumeister and L. Kilian, “Forty Years of Oil Price Fluctuations: Why the Price of Oil May Still Surprise Us,” J. Econ. Perspect., vol. 30, no. 1, pp. 139–160, Feb. 2016, doi: 10.1257/jep.30.1.139.

S. Gross, “Why are fossil fuels so hard to quit?,” Brookings. Accessed: Apr. 27, 2023. [Online]. Available: https://www.brookings.edu/essay/why-are-fossil-fuels-so-hard-to-quit/

H. Ritchie, M. Roser, and P. Rosado, “Energy,” Our World in Data, Oct. 2022, Accessed: May 02, 2023. [Online]. Available: https://ourworldindata.org/energy

V. Inyang, O. T. Laseinde, and G. M. Kanakana, “Techniques and applications of lignocellulose biomass sources as transport fuels and other bioproducts,” Int J Low-Carbon Tech, vol. 17, pp. 900–909, Jul. 2022, doi: 10.1093/ijlct/ctac068.

A. Devi, S. Bajar, H. Kour, R. Kothari, D. Pant, and A. Singh, “Lignocellulosic Biomass Valorization for Bioethanol Production: a Circular Bioeconomy Approach,” Bioenergy Res., vol. 15, no. 4, pp. 1820–1841, Feb. 2022, doi: 10.1007/s12155-022-10401-9.

Y. Shen, L. Jarboe, R. Brown, and Z. Wen, “A thermochemical-biochemical hybrid processing of lignocellulosic biomass for producing fuels and chemicals,” Biotechnol. Adv., vol. 33, no. 8, pp. 1799–1813, Dec. 2015, doi: 10.1016/j.biotechadv.2015.10.006.

L. Lange et al., “Developing a Sustainable and Circular Bio-Based Economy in EU: By Partnering Across Sectors, Upscaling and Using New Knowledge Faster, and For the Benefit of Climate, Environment & Biodiversity, and People & Business,” Front Bioeng Biotechnol, vol. 8, p. 619066, 2020, doi: 10.3389/fbioe.2020.619066.

R. Pallardy, “Lignocellulose: how nature’s wonder material could help the energy transition,” World Economic Forum. Accessed: May 02, 2023. [Online]. Available: https://www.weforum.org/agenda/2021/10/lignocellulose-how-natures-miracle-material-could-help-the-energy-transition/

Neste, “Future raw materials,” Neste worldwide. Accessed: May 04, 2023. [Online]. Available: https://www.neste.com/products/all-products/raw-materials/future-raw-materials

D. Mattanovich, M. Sauer, and B. Gasser, “Yeast biotechnology: teaching the old dog new tricks,” Microbial cell factories, vol. 13, no. 1. p. 34, Mar. 06, 2014. doi: 10.1186/1475-2859-13-34.

B. C. Behera, “Citric acid from Aspergillus niger: a comprehensive overview,” Crit. Rev. Microbiol., vol. 46, no. 6, pp. 727–749, Nov. 2020, doi: 10.1080/1040841X.2020.1828815.

N. A. Baeshen et al., “Cell factories for insulin production,” Microb. Cell Fact., vol. 13, p. 141, Oct. 2014, doi: 10.1186/s12934-014-0141-0.

S. Galanie, K. Thodey, I. J. Trenchard, M. Filsinger Interrante, and C. D. Smolke, “Complete biosynthesis of opioids in yeast,” Science, vol. 349, no. 6252, pp. 1095–1100, Sep. 2015, doi: 10.1126/science.aac9373.

S. Choi, C. W. Song, J. H. Shin, and S. Y. Lee, “Biorefineries for the production of top building block chemicals and their derivatives,” Metab. Eng., vol. 28, pp. 223–239, Mar. 2015, doi: 10.1016/j.ymben.2014.12.007.

J. J. Bozell and G. R. Petersen, “Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s ‘Top 10’ revisited,” Green Chem., vol. 12, no. 4, pp. 539–554, Apr. 2010, doi: 10.1039/B922014C.

D.-K. Ro et al., “Production of the antimalarial drug precursor artemisinic acid in engineered yeast,” Nature, vol. 440, no. 7086, pp. 940–943, Apr. 2006, doi: 10.1038/nature04640.

T. Wirth, R. K. Allemann, and S. Webster, “Looking for cheaper routes to malaria medicines,” Chemical & Engineering News. Accessed: Apr. 12, 2023. [Online]. Available: https://cen.acs.org/articles/96/i11/Looking-cheaper-routes-malaria-medicines.html

C. A. Voigt, “Synthetic biology 2020-2030: six commercially-available products that are changing our world,” Nat. Commun., vol. 11, no. 1, p. 6379, Dec. 2020, doi: 10.1038/s41467-020-20122-2.

R. Varadan et al., “Ground meat replicas,” USPTO, vol. 10172380, Jan. 2019, Accessed: Apr. 12, 2023. [Online]. Available: https://patentimages.storage.googleapis.com/fe/75/93/78a0e83e61efc2/US10172380.pdf

H. Ritchie and M. Roser, “Land Use,” Our World in Data, Nov. 2013, Accessed: Apr. 27, 2023. [Online]. Available: https://ourworldindata.org/land-use

K. Temme et al., “Methods and compositions for improving plant traits,” World Intellectual Property Organization, vol. 2018132774:A1, Jul. 2018, [Online]. Available: https://patentimages.storage.googleapis.com/ff/4b/f9/ece1903b5cc6f6/WO2018132774A1.pdf

Asahi Kasei Corp. Genomatica, Inc., “Genomatica and Asahi Kasei Partner on Renewably-Sourced Nylon 6,6,” Asahi Kasei. Accessed: Jun. 08, 2024. [Online]. Available: https://www.asahi-kasei.com/news/2021/e220316_2.html

AMSilk, “AMSilk and 21st.BIO announce partnership to accelerate the production of advanced materials made from spider silk-based proteins,” AMSilk. Accessed: Jun. 08, 2024. [Online]. Available: https://www.amsilk.com/amsilk-and-21st-bio-announce-partnership-to-accelerate-the-production-of-advanced-materials-made-from-spider-silk-based-proteins/

C. K. Savile et al., “Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture,” Science, vol. 329, no. 5989, pp. 305–309, Jul. 2010, doi: 10.1126/science.1188934.

A. Zoombelt, S. M. Edgar, and A. A. Albarran, “Optically transparent polyimides,” World Intellectual Property Organization, vol. 2020068276:A2, Apr. 2020, [Online]. Available: https://patentimages.storage.googleapis.com/ea/e7/ae/3303f7f006f4cf/WO2020068276A2.pdf

M. C. O’Leary et al., “FDA Approval Summary: Tisagenlecleucel for Treatment of Patients with Relapsed or Refractory B-cell Precursor Acute Lymphoblastic Leukemia,” Clin. Cancer Res., vol. 25, no. 4, pp. 1142–1146, Feb. 2019, doi: 10.1158/1078-0432.CCR-18-2035.

Q. Shan, Z. Demorest, and J. Presnail, “Increased of saturated fat in soybean,” World Intellectual Property Organization, vol. 2021155376:A1, Aug. 2021, [Online]. Available: https://patentimages.storage.googleapis.com/e7/16/a5/52e7d1ea90ce44/WO2021155376A1.pdf

R. Pandya, P. Gandhi, S. Ji, D. Beauchamp, and L. Hom, “Food compositions comprising one or both of recombinant beta-lactoglobulin protein and recombinant alpha-lactalbumin protein,” USPTO, vol. 9924728, Mar. 2018, [Online]. Available: https://patentimages.storage.googleapis.com/b5/34/2f/e236c08fc93f6c/US9924728.pdf

Mycorena, “Mycorena partners with leading European companies to commercially launch fungi-stabilised fat mycoleinTM,” Mycorena. Accessed: May 14, 2023. [Online]. Available: https://mycorena.com/mycotalks

T. Ghi et al., “Why the bio-based materials market is finally poised for growth,” Arthur Little. Accessed: May 14, 2023. [Online]. Available: https://www.adlittle.com/en/insights/prism/why-bio-based-materials-market-finally-poised-growth

Precedence Research, “Biotechnology Market Size, Share, Growth, Forecast 2023-2030,” Precedence Research, Dec. 2022. Accessed: May 14, 2023. [Online]. Available: https://www.precedenceresearch.com/biotechnology-market

B. Buntz, “The 50 best-selling pharmaceuticals of 2022: COVID-19 vaccines poised to take a step back,” Drug Discovery and Development. Accessed: Apr. 23, 2023. [Online]. Available: https://www.drugdiscoverytrends.com/50-of-2022s-best-selling-pharmaceuticals/

C. Geijer, R. Ledesma-Amaro, and E. Tomás-Pejó, “Unraveling the potential of non-conventional yeasts in biotechnology,” FEMS Yeast Res., vol. 22, no. 1, Jan. 2022, doi: 10.1093/femsyr/foab071.

M. L. A. Jansen et al., “Saccharomyces cerevisiae strains for second-generation ethanol production: from academic exploration to industrial implementation,” FEMS Yeast Res., vol. 17, no. 5, Aug. 2017, doi: 10.1093/femsyr/fox044.

Braskem, “Braskem and Lummus partnership: the next chapter for Green Ethylene technology.” Accessed: Apr. 17, 2023. [Online]. Available: https://www.braskem.com.br/usa/news-detail/braskem-and-lummus-partnership-the-next-chapter-for-green-ethylene-technology

Renewable Fuels Association, “Annual Ethanol Production,” Annual Ethanol Production. Accessed: Apr. 17, 2023. [Online]. Available: https://ethanolrfa.org/markets-and-statistics/annual-ethanol-production

J. Qin et al., “Engineering yeast metabolism for the discovery and production of polyamines and polyamine analogues,” Nature Catalysis, vol. 4, no. 6, pp. 498–509, Jun. 2021, doi: 10.1038/s41929-021-00631-z.

J. Nielsen, “Production of biopharmaceutical proteins by yeast: advances through metabolic engineering,” Bioengineered, vol. 4, no. 4, pp. 207–211, Jul. 2013, doi: 10.4161/bioe.22856.

S. K. Nandy and R. K. Srivastava, “A review on sustainable yeast biotechnological processes and applications,” Microbiol. Res., vol. 207, pp. 83–90, Mar. 2018, doi: 10.1016/j.micres.2017.11.013.

Downloads

Published

2024-12-10

Issue

Section

Review Article