Breaking Boundaries in Malaria Research: Design of a Genetic Tool for High-Throughput Gametocidal Drug Screening

Authors

  • Beatriz Velosa da Fonseca

DOI:

https://doi.org/10.21814/jus.5702

Keywords:

Malaria; Drug Screening; Gametocytes; Genome-editing strategies; Plasmodium falciparum.

Abstract

Malaria, a devastating illness remains a global health concern with an estimated 249 million malaria cases in 85 malaria-endemic countries around the world. Malaria elimination, challenged by drug resistance, requires strategic interventions that could be the implementation of antimalarials with selective actions on the different phases of the parasite life cycle. Of particular relevance is gametocytocidal drugs that could be used to prevent transmission of malaria infection to the mosquito.

Finding drugs with gametocidal effect thus are limited by the technical challenges of large-scale production and quantification of parasite transmission stage, gametocytes. To surmount these obstacles, our study endeavors to design a genetic engineering strategy (a vector construct) to further deliver nucleic acid information through transfections-based systems in the form of a plasmid into Plasmodium falciparum. This approach will enable us to engineer a transgenic parasite line for multi-stage drug screening, targeting the symptomatic intra-erythrocyte parasite stage and gametocytes.

Genetic engineering tools such as selected linked integration system and attB-attP site-specific recombination will be used in our vector construct aiming the genetic integration process into the P. falciparum genome. These systems will accommodate strategies for easy and accurate stage-specific quantification such as RFP-luciferase fusion cloned downstream stage-specific promoters leading to reporter products with optical outputs and for efficient production of gametocytes at large scale using a riboswitch-based inducible gene expression system. Such technology is of major need and will pave the way for scaling up the capacity for high-throughput drug screening, leading to improved strategies to find drugs capable of blocking malaria transmission.

References

"World malaria report 2022". Accessed: Sep. 14, 2023. [Online]. Available: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022

C.-C. for D. C. and Prevention, "CDC - Malaria - About Malaria - Biology". Accessed: Sep. 14, 2023. [Online]. Available: https://www.cdc.gov/malaria/about/biology/index.html

M. Crockett and K. C. Kain, "Tafenoquine: a promising new antimalarial agent", Expert Opin Investig Drugs, vol. 16, no. 5, pp. 705–715, May 2007, doi: 10.1517/13543784.16.5.705.

A. Dicko et al., "Efficacy and safety of primaquine and methylene blue for prevention of Plasmodium falciparum transmission in Mali: a phase 2, single-blind, randomised controlled trial", The Lancet Infectious Diseases, vol. 18, no. 6, pp. 627–639, Jun. 2018, doi: 10.1016/S1473-3099(18)30044-6.

"G6PD Deficiency Prevalence and Estimates of Affected Populations in Malaria Endemic Countries: A Geostatistical Model-Based Map | PLOS Medicine". Accessed: Mar. 10, 2024. [Online]. Available: https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001339

M. J. Delves et al., "Routine in vitro culture of P. falciparum gametocytes to evaluate novel transmission-blocking interventions", Nat Protoc, vol. 11, no. 9, pp. 1668–1680, Sep. 2016, doi: 10.1038/nprot.2016.096.

Q. L. Fivelman et al., "Improved synchronous production of Plasmodium falciparum gametocytes in vitro", Mol Biochem Parasitol, vol. 154, no. 1, pp. 119–123, Jul. 2007, doi: 10.1016/j.molbiopara.2007.04.008.

J. W. Field and P. G. Shute, "The Microscopic Diagnosis of Human Malaria. II. A Morphological Study of the Erythroeytic Parasites.", 1956. Accessed: Sep. 16, 2023. [Online]. Available: https://www.semanticscholar.org/paper/The-Microscopic-Diagnosis-of-Human-Malaria.-II.-A-Field-Shute/4d2310230eedbb7870e29cdd92ab62c406e1e536

G. Siciliano and P. Alano, "Enlightening the malaria parasite life cycle: bioluminescent Plasmodium in fundamental and applied research", Front. Microbiol., vol. 6, May 2015, doi: 10.3389/fmicb.2015.00391.

R. Carter and L. H. Miller, "Evidence for environmental modulation of gametocytogenesis in Plasmodium falciparum in continuous culture", Bull World Health Organ, vol. 57 Suppl 1, pp. 37–52, 1979.

C. Ngwa, T. Ferreira de Araujo Rosa, and G. Pradel, "The Biology of Malaria Gametocytes", 2016. doi: 10.5772/65464.

M. C. Bruce, R. N. Carter, K. Nakamura, M. Aikawa, and R. Carter, "Cellular location and temporal expression of the Plasmodium falciparum sexual stage antigen Pfs16", Mol Biochem Parasitol, vol. 65, no. 1, pp. 11–22, May 1994, doi: 10.1016/0166-6851(94)90111-2.

J. Ramelow, Y. Keleta, G. Niu, X. Wang, and J. Li, "Plasmodium parasitophorous vacuole membrane protein Pfs16 promotes malaria transmission by silencing mosquito immunity", J Biol Chem, vol. 299, no. 6, p. 104824, May 2023, doi: 10.1016/j.jbc.2023.104824.

L. Sun, B. M. Lutz, e Y.-X. Tao, “The CRISPR/Cas9 system for gene editing and its potential application in pain research”, Transl. Perioper. Pain Med., vol. 1, n.o 3, pp. 22–33, 2016. 12.

“Selection linked integration (SLI) for endogenous gene tagging and knock sideways in Plasmodium falciparum parasites”. Acessed: 3rd February 2024. [Online]. Available on: https://www.researchsquare.com.

P. Balabaskaran-Nina e S. A. Desai, “Diverse target gene modifications in Plasmodium falciparum using Bxb1 integrase and an intronic attB”, Parasit. Vectors, vol. 11, p. 548, out. 2018, doi: 10.1186/s13071-018-3129-5.

L. J. Nkrumah et al., “Efficient site-specific integration in Plasmodium falciparum chromosomes mediated by mycobacteriophage Bxb1 integrase”, Nat. Methods, vol. 3, n.o 8, pp. 615–621, ago. 2006, doi: 10.1038/nmeth904.

J. Hoshizaki, H. Jagoe, e M. C. S. Lee, “Efficient generation of mNeonGreen Plasmodium falciparum reporter lines enable quantitative fitness analysis”, Front. Cell. Infect. Microbiol., vol. 12, p. 981432, set. 2022, doi: 10.3389/fcimb.2022.981432.

H. P. Portugaliza, O. Llorà-Batlle, A. Rosanas-Urgell, e A. Cortés, “Reporter lines based on the gexp02 promoter enable early quantification of sexual conversion rates in the malaria parasite Plasmodium falciparum”, Sci. Rep., vol. 9, n.o 1, Art. n.o 1, out. 2019, doi: 10.1038/s41598-019-50768-y.

Y. Miyazaki et al., “A versatile Plasmodium falciparum reporter line expressing NanoLuc enables highly sensitive multi-stage drug assays”, Commun. Biol., vol. 6, n.o 1, pp. 1–15, jul. 2023, doi: 10.1038/s42003-023-05078-5.

C. Marin-Mogollon et al., “A P. falciparum NF54 Reporter Line Expressing mCherry-Luciferase in Gametocytes, Sporozoites, and Liver-Stages”, Front. Cell. Infect. Microbiol., vol. 9, 2019, Acessed: 26th September 2022. [Online]. Available on: https://www.frontiersin.org/articles/10.3389/fcimb.2019.00096

F. Hawking, M. E. Wilson, e K. Gammage, “Evidence for cyclic development and short-lived maturity in the gametocytes of Plasmodium falciparum.”, Trans. R. Soc. Trop. Med. Hyg., vol. 65, n.o 5, pp. 549–59, 1971.

M. E. Matlashov et al., “A set of monomeric near-infrared fluorescent proteins for multicolor imaging across scales”, Nat. Commun., vol. 11, n.o 1, p. 239, dez. 2020, doi: 10.1038/s41467-019-13897-6.

C. A. Combs, “Fluorescence Microscopy: A Concise Guide to Current Imaging Methods”, Curr. Protoc. Neurosci. Editor. Board Jacqueline N Crawley Al, vol. 0 2, p. Unit2.1, jan. 2010, doi: 10.1002/0471142301.ns0201s50.

K. Kulkeaw, “Progress and challenges in the use of fluorescence‐based flow cytometric assays for anti‐malarial drug susceptibility tests”, Malar. J., vol. 20, n.o 1, p. 57, jan. 2021, doi: 10.1186/s12936-021-03591-8.

Downloads

Published

2024-04-17

Issue

Section

Articles