Current and future water resources in Chile and its availability for the Mediterranean vegetation

Authors

DOI:

https://doi.org/10.21814/physisterrae.1889

Keywords:

Water balance, Climate change, Sensitive areas, Mediterranean climate type, Chile

Abstract

The arid and semi-arid regions occupy more than 45% of global land surface, including the central territory of Chile. The latter represents a region which should be preserved due to its economic, ecological and climatic values. Nonetheless, the increasing pressure on water and climate change suggest the quantification of its present and future water resources as well as to know what biomes could be affected by these hydrological variations. So, we have quantified the current and future water balances for whole Chile and investigated about the Mediterranean vegetation formations more affected by the variations in the water amount. The results have shown that the central part of the country, where inhabits the most of Chilean population, is the territory more sensitive to water scarcity since reductions in water can represent an average of 75 mm y-1 for 80% of the Mediterranean biome. This reduction could suppose these areas do not work properly any more.

Downloads

Download data is not yet available.

References

Asbjornsen, H., Goldsmith, G. R., Alvarado-Barrientos, M. S., Rebel, K., Osch, F. P. V., Rietkerk, M., et al. (2011). Ecohydrological advances and applications in plant–water relations research: a review. Journal of Plant Ecology, 4, 3-22. https://doi.org/10.1093/jpe/rtr005

Blöschl, G., Bierkens, M. F. P., Chambel, A., Cudennec, C., Destouni, G., Fiori, A., et al. (2019). Twenty-three unsolved problems in hydrology (UPH) – a community perspective. Hydrological Sciences Journal. https://doi.org/10.1080/02626667.2019.1620507

Eagleson, P. (2002). Ecohydrology: Darwinian expression of vegetation form and function. UK: Cambrige University Press.

FAO (2014). World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps (Vol. 106). Rome: FAO. 106.

Fick, S., Hijmans, R. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302-4315. https://doi.org/10.1002/joc.5086

García Marín, R., Schnabel, S., Pulido Fernández, M., Lozano-Parra, F. J., Jariego García, Á., Lagar Timón, D. (2010). Riesgo de sequía y gestión de recursos hídricos. In J. Mora Aliseda, F. Dos Reis Condesso, & B. De Sao Pedro (Eds.), Gestión sostenible de los recursos hídricos (pp. 445-473). Lisboa, Portugal.

Hearne, R., Donoso, G. (2014). Water markets in Chile: Are they meeting needs? In W. Easter & Q. Huang (Eds.), Water markets for the 21st Century. What have we learned? Global Issues in Water Policy (Vol. 11, pp. 103-126). USA: Springer.

IPCC (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland.

Larraín, S., Poo, P. (2010). Conflictos por el Agua en Chile. Entre los derechos humanos y las reglas del mercado. Chile: Embajada de Holanda y Fundación Heinrich Böll.

Lewis, D., Singer, M. J., Dahlgren, R. A., Tate, K. W. (2000). Hydrology in a California oak woodland watershed: a 17-year study. Journal of Hydrology, 240, 106-117. https://doi.org/10.1016/S0022-1694(00)00337-1

Lozano-Parra, J. (2015). Dinámica del agua edáfica en dehesas y su relación con el clima y la vegetación. Boletín de la Asociación de Geográfos Españoles, 69, 625-629.

Lozano-Parra, J., Maneta, M., Schnabel, S. (2014). Climate and topographic controls on simulated pasture production in a semiarid Mediterranean watershed with scattered tree cover. Hydrology and Earth System Sciences, 18, 1439-1456. https://doi.org/10.5194/hess-18-1439-2014

Lozano-Parra, J., Schnabel, S. (2015). Respuesta de la vegetación herbácea a las variaciones hídricas del suelo. In S. Martínez Pérez & A. Sastre Merlín (Eds.), Estudios de la Zona No Saturada (Vol. XII, pp. 77-84). Alcalá de Henares: Universidad de Alcalá de Henares.

Lozano-Parra, J., Schnabel, S., Ceballos-Barbancho, A. (2015). The role of vegetation covers on soil wetting processes at rainfall event scale in scattered tree woodland of Mediterranean climate. Journal of Hydrology, 529, 951-961. https://doi.org/10.1016/j.jhydrol.2015.09.018

Lozano-Parra, J., Van Schaik, L., Schnabel, S., Gómez-Gutiérrez, Á. (2016). Soil moisture dynamics at high temporal resolution in a mediterranean watershed with scattered tree cover. Hydrological Processes, 30, 1155-1170. https://doi.org/10.1002/hyp.10694

Maneta, M. P., Soulsby, C., Kuppel, S., Tetzlaff, D. (2018). Conceptualizing catchment storage dynamics and nonlinearities. Hydrological Processes, Invited Commentary, 1-5. https://doi.org/10.1002/hyp.13262

McColl, K., Alemohammad, S., Akbar, R., Konings, A., Yueh, S., Entekhabi, D. (2017). The global distribution and dynamics of surface soil moisture. Nature Geoscience. https://doi.org/10.1038/ngeo2868

Pliscoff, P., Luebert, F. (2006). Sinopsis Bioclimatica y Vegetacional de Chile. Editorial Universitaria.

Rivera, D., Godoy-Faúndez, A., Lillo, M., Alvez, A., Delgado, V., Gonzalo-Martín, C., et al. (2016). Legal disputes as a proxy for regional conflicts over water rights in Chile. Journal of Hydrology, 535, 36-45. https://doi.org/10.1016/j.jhydrol.2016.01.057

Rodell, M., Famiglietti, J., Wiese, D., Reager, J., Beaudoing, H., Landerer, F., et al. (2018). Emerging trends in global freshwater availability. Nature, 557, 651–659. https://doi.org/10.1038/s41586-018-0123-1

Rodríguez-Iturbe, I. (2000). Ecohydrology: A hydrologic perspective of climate-soil-vegetation dynamics. Water Resources Research, 36, 3-9. https://doi.org/10.1029/1999WR900210

Rodríguez-Iturbe, I., D'Odorico, P., Laio, F., Ridolfi, L., Tamea, S. (2007). Challenges in humid land ecohydrology: Interactions of water table and unsaturated zone with climate, soil, and vegetation. Water Resources Research, 43, 1-5. https://doi.org/10.1029/2007WR006073

Rodríguez-Iturbe, I., Porporato, A. (2004). Ecohydrology of Water-Controlled Ecosystems. Cambrige, UK: Cambrige University Press.

Rubel, F., Kottek, M. (2010). Observed and projected climate shifts 1901–2100 depicted by world maps of the Koppen-Geiger climate classification. Meteorologische Zeitschrift, 19, 135-141. https://doi.org/10.1127/0941-2948/2010/0430

Scheffer, M., Carpenter, S., Foley, J. A., Folke, C., Walker, B. (2001). Catastrophic shifts in ecosystems. Nature, 413, 591-596. https://doi.org/10.1038/35098000

Scheffer, M., Carpenter, S. R. (2003). Catastrophic regime shifts in ecosystems: linking theory to observation. Trends in Ecology and Evolution, 18, 648-656. https://doi.org/10.1016/j.tree.2003.09.002

Seneviratne, S., Corti, T., Davin, E., Hirschi, M., Jaeger, E., Lehner, I., et al. (2010). Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Science Reviews, 99, 125-161. https://doi.org/10.1016/j.earscirev.2010.02.004

Turc, L. (1961). Estimation of irrigation water requirements, potential evapotranspiration: A simple climatic formula evolved up to date. Ann. Agron., 12, 13-49.

Wahba, G. (1990). Spline Models for Observational Data. Paper presented at the CBMS-NSF Regional Conference Series in Applied Mathematics, University of Wisconsin, Madison, Wisconsin.

World Bank. (2011). Chile: Diagnóstico de la gestión de los recursos hídricos. In W. Bank (Ed.), Banco Mundial (Vol. N 63392, pp. 88).

Published

2020-06-01

How to Cite

Lozano-Parra, J., García-Marín, R., Pulido, M., & Ruiz-Álvarez, V. (2020). Current and future water resources in Chile and its availability for the Mediterranean vegetation. Physis Terrae - Ibero-Afro-American Journal of Physical Geography and Environment, 2(1), 87–100. https://doi.org/10.21814/physisterrae.1889

Issue

Section

Water resources and watershed management