Evaluating post-fire vegetation regrowth in Brazil’s Chapada Diamantina National Park using remote sensing

Authors

DOI:

https://doi.org/10.21814/physisterrae.4482

Keywords:

Google Earth Engine, Landsat 8, Vegetation regrowth, Forest fires, NBR

Abstract

Understanding fire dynamics in vegetation is essential for assessing the impacts caused by wildfire action, especially because biomass burning in ecosystems has been indicated as one of the main factors that impact climate and biodiversity. A current alternative to detecting fire via satellite data is cloud processing platforms such as Google Earth Engine (GEE). Given this context, this work aims to assess the degree of vegetation regrowth after a wildfire in an area included in the Chapada Diamantina National Park (Bahia - Brazil) based on applying the Normalized Burn Ratio (NBR) in Landsat Surface Reflectance Tier 1 data sets. The images were accessed and processed on the GEE platform. The NBR index was more sensitive to the pre-and post-fire displacements of the pixels affected by the fires between the Landsat NIR and SWIR image bands. We found that the NBR mean values decreased immediately after the fire occurrence in the entire study area. Then, following the wildfire, the NBR mean values returned to conditions similar to those that preceded the fire. We can conclude that the plant biomass had already recovered considerably nine months after the fire when checking the NBR values. Therefore, this study points out the need to better understand the wildfire dynamics in the Chapada Diamantina National Park region and the impact associated with these events, with respect to fire ecology.

Downloads

Download data is not yet available.

References

Alencar, A. A. C., Arruda, V. L. S., Vieira, W., Conciani, D. E., Costa, D. P., Crusco, N., Duverger, S. G., Ferreira, N. C., Franca-rocha, W., Hasenack, H., Felipe, L., Martenexen, M., Piontekowski, V. J., Ribeiro, N. V., Rosa, E. R., Rosa, M. R., Moura, S., Santos, B., Shimbo, J. Z., & Eduardo, V. (2022). Long-Term Landsat-Based Monthly Burned Area Dataset for the Brazilian Biomes Using Deep Learning. DOI: https://doi.org/10.3390/rs14112510

Araújo, T., & Conceição, A. A. (2021). High functional redundancy drives vegetation recovery in Campo rupestre affected by wildfires. Flora, 281, 151866. https://doi.org/10.1016/j.flora.2021.151866 DOI: https://doi.org/10.1016/j.flora.2021.151866

Bento-Gonçalves, A., Ferreira-Leite, F., & Vieira, A. (2019). Frequência, Intensidade e Severidade, três conceitos-chave no estudo dos incêndios florestais. In Os incêndios florestais em busca de um novo paradigma. https://doi.org/https://doi.org/10.34037/978-972-8330-25-5_2 Coimbra DOI: https://doi.org/10.34037/978-972-8330-25-5_2_2

Bento-Gonçalves, A., & Vieira, A. (2020). Wildfires in the wildland-urban interface: Key concepts and evaluation methodologies. Science of The Total Environment, 707, 135592. https://doi.org/10.1016/j.scitotenv.2019.135592 DOI: https://doi.org/10.1016/j.scitotenv.2019.135592

Bento-Gonçalves, A., Vieira, A., Baptista, G., Rocha, J., & Santos, S. M. B. (2019). The 2017 Large Wildfire of Braga - Evaluation of the Different Conditions of the Burned Vegetation. GeoEcoTrop, 43(4), 627–640.

Bento-gonçalves, A., Vieira, A., Úbeda, X., & Martin, D. (2012). Geoderma Fire and soils : Key concepts and recent advances. Geoderma. https://doi.org/10.1016/j.geoderma.2012.01.004 DOI: https://doi.org/10.1016/j.geoderma.2012.01.004

Bond, W., & Keeley, J. (2005). Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends in Ecology & Evolution, 20(7), 387–394. https://doi.org/10.1016/j.tree.2005.04.025 DOI: https://doi.org/10.1016/j.tree.2005.04.025

Chuvieco, E., Aguado, I., Yebra, M., Nieto, H., Salas, J., Martín, M. P., Vilar, L., Martínez, J., Martín, S., Ibarra, P., de la Riva, J., Baeza, J., Rodríguez, F., Molina, J. R., Herrera, M. A., & Zamora, R. (2010). Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecological Modelling, 221(1), 46–58. https://doi.org/10.1016/j.ecolmodel.2008.11.017 DOI: https://doi.org/10.1016/j.ecolmodel.2008.11.017

Doerr, S. H., Shakesby, R. A., Blake, W. H., Chafer, C. J., Humphreys, G. S., & Wallbrink, P. J. (2006). Effects of differing wildfire severities on soil wettability and implications for hydrological response. Journal of Hydrology, 319(1–4), 295–311. https://doi.org/10.1016/j.jhydrol.2005.06.038 DOI: https://doi.org/10.1016/j.jhydrol.2005.06.038

Escuin, S., Navarro, R., & Fernández, P. (2008). Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM images. International Journal of Remote Sensing, 29(4), 1053–1073. https://doi.org/10.1080/01431160701281072 DOI: https://doi.org/10.1080/01431160701281072

Ferreira-Leite, F., Lourenço, L., & Bento-Golçalves, A. (2013). Large forest fires in mainland Portugal, brief characterization. Méditerranée, 121, 53–65. https://doi.org/10.4000/mediterranee.6863 DOI: https://doi.org/10.4000/mediterranee.6863

Foga, S., Scaramuzza, P. L., Guo, S., Zhu, Z., Dilley, R. D., Beckmann, T., Schmidt, G. L., Dwyer, J. L., Joseph Hughes, M., & Laue, B. (2017). Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sensing of Environment, 194, 379–390. https://doi.org/10.1016/j.rse.2017.03.026 DOI: https://doi.org/10.1016/j.rse.2017.03.026

Franca-Rocha, W., Santos, S. M. B. dos, Bento-Gonçalves, A., & Ferreira-Leite, F. (2017). Are there mega fires in Brazilian Savannas? The national park of Chapada Diamantina Case (Bahia, Brazil). In Wildfores: Perspectives, Issues and Challenges of the 21st century. Nova Science Publishers.

French, N. H. F., Kasischke, E. S., Hall, R. J., Murphy, K. A., Verbyla, D. L., Hoy, E. E., & Allen, J. L. (2008). Using Landsat data to assess fire and burn severity in the North American boreal forest region: an overview and summary of results. International Journal of Wildland Fire, 17(4), 443. https://doi.org/10.1071/WF08007 DOI: https://doi.org/10.1071/WF08007

Gonçalves, C. N., Mesquita, F. W., Lima, N. R. G., Coslope, L. A., & Lintomen, B. S. (2011). Recorrência dos Incêndios e Fitossociologia da Vegetação em Áreas com Diferentes Regimes de Queima no Parque Nacional da Chapada Diamantina. Biodiversidade Brasileira, 1(2), 161–179.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031 DOI: https://doi.org/10.1016/j.rse.2017.06.031

Gouveia, C., DaCamara, C. C., & Trigo, R. M. (2010). Post-fire vegetation recovery in Portugal based on spot/vegetation data. Natural Hazards and Earth System Science, 10(4), 673–684. https://doi.org/10.5194/nhess-10-673-2010 DOI: https://doi.org/10.5194/nhess-10-673-2010

Granged, A. J. P., Jordán, A., Zavala, L. M., Muñoz-Rojas, M., & Mataix-Solera, J. (2011). Short-term effects of experimental fire for a soil under eucalyptus forest (SE Australia). Geoderma, 167–168, 125–134. https://doi.org/10.1016/j.geoderma.2011.09.011 DOI: https://doi.org/10.1016/j.geoderma.2011.09.011

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., & Townshend, J. R. G. (2013). High-Resolution Global Maps of 21st-Century Forest Cover Change. Science, 342(6160), 850–853. https://doi.org/10.1126/science.1244693 DOI: https://doi.org/10.1126/science.1244693

Johansen, K., Phinn, S., & Taylor, M. (2015). Mapping woody vegetation clearing in Queensland, Australia from Landsat imagery using the Google Earth Engine. Remote Sensing Applications: Society and Environment, 1, 36–49. https://doi.org/10.1016/j.rsase.2015.06.002 DOI: https://doi.org/10.1016/j.rsase.2015.06.002

Key, C. H., & Benson, N. C. (2006). Landscape assessment: Sampling and analysis methods. In USDA Forest Service General Technical Report RMRS-GTR-164-CD (pp. 1–55).

Leite, C. C. S. S., Santos, S. M. B., Franca-Rocha, W. J. S., Silva, A. B., & Baptista, G. M. M. (2017). Análise dos incêndios ocorridos no parque nacional da cha-pada diamantina-bahia em 2008 e 2015 com suporte em ín-dices espectrais de vegetação. Revista Brasileira de Cartografia, 69(6). http://www.seer.ufu.br/index.php/revistabrasileiracartografia/article/view/44315 DOI: https://doi.org/10.14393/rbcv69n6-44315

Meng, Q., & Meentemeyer, R. K. (2011). Modeling of multi-strata forest fire severity using Landsat TM data. International Journal of Applied Earth Observation and Geoinformation, 13(1), 120–126. https://doi.org/10.1016/j.jag.2010.08.002 DOI: https://doi.org/10.1016/j.jag.2010.08.002

Morresi, D., Vitali, A., Urbinati, C., & Garbarino, M. (2019). Forest Spectral Recovery and Regeneration Dynamics in Stand-Replacing Wildfires of Central Apennines Derived from Landsat Time Series. Remote Sensing, 11(3), 308. https://doi.org/10.3390/rs11030308 DOI: https://doi.org/10.3390/rs11030308

Neves, S. P. S., & Conceição, A. A. (2010). Campo rupestre recém-queimado na Chapada Diamantina, Bahia, Brasil: plantas de rebrota e sementes, com espécies endêmicas na rocha. Acta Botanica Brasilica, 24(3), 697–707. https://doi.org/10.1590/S0102-33062010000300013 DOI: https://doi.org/10.1590/S0102-33062010000300013

Parker, B. M., Lewis, T., & Srivastava, S. K. (2015). Estimation and evaluation of multi-decadal fire severity patterns using Landsat sensors. Remote Sensing of Environment, 170, 340–349. https://doi.org/10.1016/j.rse.2015.09.014 DOI: https://doi.org/10.1016/j.rse.2015.09.014

Parks, S., Holsinger, L., Voss, M., Loehman, R., & Robinson, N. (2018). Mean Composite Fire Severity Metrics Computed with Google Earth Engine Offer Improved Accuracy and Expanded Mapping Potential. Remote Sensing, 10(6), 879. https://doi.org/10.3390/rs10060879 DOI: https://doi.org/10.3390/rs10060879

Robichaud, P. R., Lewis, S. A., Laes, D. Y. M., Hudak, A. T., Kokaly, R. F., & Zamudio, J. A. (2007). Postfire soil burn severity mapping with hyperspectral image unmixing. Remote Sensing of Environment, 108(4), 467–480. https://doi.org/10.1016/j.rse.2006.11.027 DOI: https://doi.org/10.1016/j.rse.2006.11.027

Rogan, J., & Yool, S. R. (2001). Mapping fire-induced vegetation depletion in the Peloncillo Mountains, Arizona and New Mexico. International Journal of Remote Sensing, 22(16), 3101–3121. https://doi.org/10.1080/01431160152558279 DOI: https://doi.org/10.1080/01431160152558279

Ryu, J.-H., Han, K.-S., Hong, S., Park, N.-W., Lee, Y.-W., & Cho, J. (2018). Satellite-Based Evaluation of the Post-Fire Recovery Process from the Worst Forest Fire Case in South Korea. Remote Sensing, 10(6), 918. https://doi.org/10.3390/rs10060918 DOI: https://doi.org/10.3390/rs10060918

Santos, S. M. B. dos, Bento-Gonçalves, A., Franca-Rocha, W., & Baptista, G. (2020). Assessment of Burned Forest Area Severity and Postfire Regrowth in Chapada Diamantina National Park (Bahia, Brazil) Using dNBR and RdNBR Spectral Indices. Geosciences, 10(3), 106. https://doi.org/10.3390/geosciences10030106 DOI: https://doi.org/10.3390/geosciences10030106

Santos, S. M. B. dos, Bento-Gonçalves, A., & Vieira, A. (2021). Research on Wildfires and Remote Sensing in the Last Three Decades: A Bibliometric Analysis. Forests, 12(5), 604. https://doi.org/10.3390/f12050604 DOI: https://doi.org/10.3390/f12050604

Santos, J. F., Soares, R. V., & Batista, A. C. (2006). PERFIL DOS INCÊNDIOS FLORESTAIS NO BRASIL EM ÁREAS PROTEGIDAS NO PERÍODO DE 1998 A 2002. 93–100. DOI: https://doi.org/10.5380/rf.v36i1.5510

Santos, S., Franca-Rocha, W. J. S., Bento-Gonçalves, A., & Baptista, G. M. M. (2017). Quantificação e avaliação dos focos de calor no parque na-cional da chapada diamantina e entorno no período de 2007 a 2016. Revista Brasileira de Cartografia, 69(4). http://www.seer.ufu.br/index.php/revistabrasileiracartografia/article/view/44329 DOI: https://doi.org/10.14393/rbcv69n4-44329

Sonnenschein, R., Kuemmerle, T., Udelhoven, T., Stellmes, M., & Hostert, P. (2011). Differences in Landsat-based trend analyses in drylands due to the choice of vegetation estimate. Remote Sensing of Environment, 115(6), 1408–1420. https://doi.org/10.1016/j.rse.2011.01.021 DOI: https://doi.org/10.1016/j.rse.2011.01.021

Soulard, C., Albano, C., Villarreal, M., & Walker, J. (2016). Continuous 1985–2012 Landsat Monitoring to Assess Fire Effects on Meadows in Yosemite National Park, California. Remote Sensing, 8(5), 371. https://doi.org/10.3390/rs8050371 DOI: https://doi.org/10.3390/rs8050371

Srivastava, S. K., King, L., Mitchell, C., Wiegand, A., Carter, R. W., Shapcott, A., & Russell-Smith, J. (2013). Ecological implications of standard fire-mapping approaches for fire management of the World Heritage Area, Fraser Island, Australia. International Journal of Wildland Fire, 22(3), 381. https://doi.org/10.1071/WF11037 DOI: https://doi.org/10.1071/WF11037

Sunderman, S. O., & Weisberg, P. J. (2011). Remote sensing approaches for reconstructing fire perimeters and burn severity mosaics in desert spring ecosystems. Remote Sensing of Environment, 115(9), 2384–2389. https://doi.org/10.1016/j.rse.2011.05.001 DOI: https://doi.org/10.1016/j.rse.2011.05.001

Veraverbeke, S., Lhermitte, S., Verstraeten, W. W., & Goossens, R. (2010). The temporal dimension of differenced Normalized Burn Ratio (dNBR) fire/burn severity studies: The case of the large 2007 Peloponnese wildfires in Greece. Remote Sensing of Environment, 114(11), 2548–2563. https://doi.org/10.1016/j.rse.2010.05.029 DOI: https://doi.org/10.1016/j.rse.2010.05.029

Veraverbeke, Sander, Stavros, E. N., & Hook, S. J. (2014). Assessing fire severity using imaging spectroscopy data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and comparison with multispectral capabilities. Remote Sensing of Environment, 154, 153–163. https://doi.org/10.1016/j.rse.2014.08.019 DOI: https://doi.org/10.1016/j.rse.2014.08.019

Westerling, A. l., Hidalgo, H. G., Cayan, D. R., & Swetnam, T. W. (2006). Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity. Science, 1161(August), 940–944. DOI: https://doi.org/10.1126/science.1128834

Wimberly, M. C., & Reilly, M. J. (2007). Assessment of fire severity and species diversity in the southern Appalachians using Landsat TM and ETM+ imagery. Remote Sensing of Environment, 108(2), 189–197. https://doi.org/10.1016/j.rse.2006.03.019 DOI: https://doi.org/10.1016/j.rse.2006.03.019

Downloads

Published

2022-12-31

How to Cite

Moura Batista dos Santos, S., Bento-Gonçalves, A., António, Santos, J., Ali Ganem, K., Franca-Rocha, W., Machado Figueiredo, R., & Galano Duverger, S. (2022). Evaluating post-fire vegetation regrowth in Brazil’s Chapada Diamantina National Park using remote sensing. Physis Terrae - Ibero-Afro-American Journal of Physical Geography and Environment, 4(1-2), 1–19. https://doi.org/10.21814/physisterrae.4482

Issue

Section

Environmental changes and risks