In general terms, discrete choice models are calibrated using data obtained from Revealed Preference (RP) and Stated Preference (SP) surveys. In transportation planning, one of the main sources of data is the Origin/Destination (O/D) Survey, which is an R

Authors

DOI:

https://doi.org/10.21814/ecum.4494

Abstract

In general terms, discrete choice models are calibrated using data obtained from Revealed Preference (RP) and Stated Preference (SP) surveys. In transportation planning, one of the main sources of data is the Origin/Destination (O/D) Survey, which is an RP survey and describes the actual choices and behaviors of individuals. However, it is not possible, through this source, to characterize the alternatives not chosen. This study has two related aims: (1) to propose a criterion to characterize the travel mode alternatives using RP data, and (2) to test the improvement of travel mode choice estimates based on including characteristics of alternatives. First, the CART (Classification and Regression Tree) algorithm was used to characterize the travel times of the travel modes available in the study area (city of São Paulo, Brazil). The trips were classified according to independent variables selected by the algorithm, and average travel time values were obtained for five travel mode alternatives – information not previously available in the RP survey. Finally, the improvement of discrete choice modeling, based on including average travel times, was tested using a validation sample and performance metrics, such as Hit rates and LogLikelihood values. An increase in estimates was observed from including travel duration, and the proposed method is an academic contribution to the modeling based on RP data.

References

M. Ben-Akiva, M. Bierlaire. Discrete choice models with applications to departure time and route choice, In: R.W. Hall (Ed.), Handbook of Transportation Science, second edition, Kluwer Academic, 2003, pp. 7‐38. DOI: https://doi.org/10.1007/0-306-48058-1_2

D. L. McFadden. The Measurement of Urban Travel Demand. J. Public Econ., 4 (1974) 303-328. DOI: https://doi.org/10.1016/0047-2727(74)90003-6

M. Ben‐Akiva, S. Lerman. Discrete Choice Analysis: Theory and Application to Travel Demand, MIT Press, Cambridge MA, USA, 1985, pp. 59‐99.

M. Ben-Akiva, T. Morikawa. Estimation of switching models from revealed preferences and stated intentions. Transp. Res., 24 (1990) 485–495. DOI: https://doi.org/10.1016/0191-2607(90)90037-7

G. Antonini, M. Bierlaire, M. Weber. Discrete choice models of pedestrian walking behavior. Transportation Research Part B, 40 (2006) 667-687. https://doi.org/10.1016/j.trb.2005.09.006. DOI: https://doi.org/10.1016/j.trb.2005.09.006

E. Frejinger. Route choice analysis: data, models, algorithms and applications. Ph.D. Dissertation. École Polytechnique Fédérale de Lausanne, France, 2008.

M. Ruiz-Pérez, J.M. Seguí-Pons. Transport Mode Choice for Residents in a Tourist Destination: The Long Road to Sustainability (the Case of Mallorca, Spain): Sustainability, 22 (2020) 9480. https://doi:10.3390/su12229480. DOI: https://doi.org/10.3390/su12229480

M. U. C. Caldas, C. S. Pitombo, l. Assirati. Strategy to reduce the number of parameters to be estimated in discrete choice models: an approach to large choice sets. Travel Behav. Soc., 25 (2021) 1-17. https://doi.org/10.1016/j.tbs.2021.05.001. DOI: https://doi.org/10.1016/j.tbs.2021.05.001

W.Q. Al-Salih, D. Esztergár-Kiss. Linking Mode Choice with Travel Behavior by Using Logit Model Based on Utility Function: Sustainability, 13 (2021). https://doi.org/10.3390/su13084332. DOI: https://doi.org/10.3390/su13084332

C.S. Costa, C.S. Pitombo, F.L.U. Souza. Travel behavior before and during the COVID-19 pandemic in Brazil: mobility changes and transport policies for a sustainable transportation system in the post-pandemic period: Sustainability, 14 (2022) 4573. https://doi.org/10.3390/su14084573. DOI: https://doi.org/10.3390/su14084573

A. Mahdi, J. Hamadneh, D. Esztergár-Kiss. Modeling of Travel Behavior in Budapest: Leisure Travelers. Transp. Res. Proc., 62 (2022) 310-317. https://doi.org/10.1016/j.trpro.2022.02.039. DOI: https://doi.org/10.1016/j.trpro.2022.02.039

A.A. Ahern, N. Tapley. The use of stated preference techniques to model modal choices on interurban trips in Ireland. Transp. Res. A., 42 (2008) 15–27. https://doi.org/10.1016/j.tra.2007.06.005. DOI: https://doi.org/10.1016/j.tra.2007.06.005

J.J. Louviere, R.T. Carson, L. Burgess, D. Street, A. Marley. Sequential preference questions factors inuencing completion rates and response times using an online panel: J. Choice Model., 8 (2013) 1-18. DOI: https://doi.org/10.1016/j.jocm.2013.04.009

D. Hensher, J. Louviere, J. Swait. Combining sources of preference data. J. Econom., 89 (1999) 197-221. DOI: https://doi.org/10.1016/S0304-4076(98)00061-X

C. Bhat, S. Castelar. A unified mixed logit framework for modeling revealed and stated preferences: formulation and application to congestion pricing analysis in the San Francisco bay area: Transp. Res. B, 36 (2002), 577-669. DOI: https://doi.org/10.1016/S0191-2615(01)00020-0

K. Train, W.W. Wilson. Estimation on stated-preference experiments constructed from revealed-preference choices: Transp. Res. B, 42 (2008) 191-203. DOI: https://doi.org/10.1016/j.trb.2007.04.012

Y. Qiao, Y. Huang, F. Yang, M. Zhang, L. Chen. Empirical study of travel mode forecasting improvement for the combined revealed preference/stated preference data-based discrete choice model. Adv. Mech. Eng., 8 (2016). https://doi.org/10.1177/168781401562483. DOI: https://doi.org/10.1177/1687814015624836

H.H.H. Souza, F.F.L.M. Sousa, F.M. Oliveira Neto, R.M.C. Freire, C.F.G Loureiro. Estimação do valor do tempo com base em pesquisas domiciliares de origem e destino: desafios teóricos e dificuldades práticas. In: Anais do XXXI Congresso da ANPET, Recife, Brasil, 2017.

C. Fezzi, S. Ferrini, I.J. Bateman. Using revealed preferences to estimate the value of travel time to recreation sites: J. Environ. Econ. Manage, 67 (2014) 58-70. doi:10.1016/j.jeem.2013.10.003. DOI: https://doi.org/10.1016/j.jeem.2013.10.003

H. Kato, T. Oda, A. Sakashita. Valuation of travel time saving with revealed preference data in Japan: Further Analysis. In: 13th WCT, CPAPER, Rio de Janeiro, Brasil, 2013.

M. Diao, Y. Zhu, J. Ferreira, C. Ratti. Inferring individual daily activities from mobile phone traces: a Boston example: Environ. Plan. B Plan. Des., 43 (2016) 920–940. https://doi.org/10.1177/0265813515600896. DOI: https://doi.org/10.1177/0265813515600896

A. Dypvik Landmark, P. Arnesen, C.-J. Sodersten, O.A. Hjelkrem. Mobile phone data in transportation research: methods for benchmarking against other data sources: Transportation, 48 (2021) 2883–2905. https://doi.org/10.1007/s11116-020-10151-7. DOI: https://doi.org/10.1007/s11116-020-10151-7

L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone. Classification and Regression Trees, Wadsworth International Group, Belmont, CA, 1984.

M.N. Pianucci, C.S. Pitombo. Uso de árvore de decisão para previsão de geração de viagens como alternativa ao método de classificação cruzada. Engenharia Civil UM, 56 (2019) 5-13.

P. Geurts. Discretization variance in decision tree induction. Technical report, University of Liège, Dept. of Electrical and Computer Engineering, 2000.

RL. De Mantaras. A distance-based attribute selection measure for decision tree induction: Machine Learning, 6 (1991) 81–92. https://doi.org/10.1023/A:1022694001379. DOI: https://doi.org/10.1023/A:1022694001379

V. A. Gomes, M. U. C. Caldas, C. S. Pitombo. An investigation of trip-chaining behaviour based on activity participation, socioeconomic variables and aggregated characteristics of modal alternatives: Transportes (Rio de Janeiro), 29 (2021) 173-193. DOI: https://doi.org/10.14295/transportes.v29i1.2302

M. Bierlaire. A short introduction to PandasBiogeme. Technical report TRANSP-OR 200605. Transport and Mobility Laboratory, ENAC, EPFL, 2020.

F. Southworth. Calibration of multinomial logit models of mode and destination choice. Transp. Res. A, 15 (1981) 315-325. https://doi.org/10.1016/0191-2607(81)90013-3. DOI: https://doi.org/10.1016/0191-2607(81)90013-3

S. Bekhor, Y. Shiftan. Specification and Estimation of Mode Choice Model Capturing Similarity between Mixed Auto and Transit Alternatives: J. Choice Model., 3 (2010) 29-49. DOI: https://doi.org/10.1016/S1755-5345(13)70034-4

D.T. Hartgen. Attitudinal and situational variables influencing urban mode choice: Some empirical findings: Transportation, 3 (1974). https://doi.org/10.1007/BF00167967 DOI: https://doi.org/10.1007/BF00167967

K. Train, D. McFadden. The Goods/Leisure Tradeoff and Disaggregate Work Trip Mode Choice Models: Transp. Res., 12 (1978) 349-353. DOI: https://doi.org/10.1016/0041-1647(78)90011-4

R. Barff, D. Mackay, R.W. Olshavsky. A Selective Review of Travel-Mode Choice Models: J. Consum. Res., 8 (1982) 370–380. https://doi.org/10.1086/208877. DOI: https://doi.org/10.1086/208877

Companhia de Trem Metropolitano de São Paulo. Resultados da Pesquisa Origem-Destino 2007, http://www.metro.sp.gov.br/pesquisa-od/arquivos/OD_2007_Sumario_de_Dados.pdf, 2008. (acesso em 19 junho 2019).

Downloads

Published

2023-01-01

How to Cite

V. A. Gomes, C. S. Pitombo, & L. Assirati. (2023). In general terms, discrete choice models are calibrated using data obtained from Revealed Preference (RP) and Stated Preference (SP) surveys. In transportation planning, one of the main sources of data is the Origin/Destination (O/D) Survey, which is an R. Engenharia Civil UM, (63), 18–30. https://doi.org/10.21814/ecum.4494

Issue

Section

Artigos